• ベストアンサー
  • 困ってます

機械工学と数学

機械工学で特に重要な数学は何ですか? 【微積分/線形代数/ベクトル解析/フーリエ級数/ラプラス変換/偏微分方程式/常微分方程式/複素解析】

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • gigsbi
  • ベストアンサー率18% (2/11)

何をしたいかで決まる事だが。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2

逆に尋ねるが・・、 そこな質問者は機械工学学生が学ぶ数学の各分野で重要でないものが有るとでも思っているのか😠

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • AI時代と数学力

    今後のAI時代で数学力は鍛えておいた方がいいですか?数学は苦手ではありませんが、仕事の関係でたまに勉強しています。大学の数学の講義では、微積分、線形代数、常微分方程式、ラプラス変換、複素関数、フーリエ解析などを学びました。個人的に好きだったのはラプラス変換です。

  • 工学部での数学について

    大学1年男子です。 電気系の学科にいます。 数学関係の講義では、 ・微分積分 ・線形代数 の二つですが、 ・微分積分は、なんかまどろっこしい議論ばかりしている(収束の定義とか) ・線形代数は、なんか当たり前のことばかり のような感じがします。 工学部んの数学でどう使うのかもピンときません。 友達に聞いても、要領を得ず・・・。 学ぶ目的とか動機付けをお願いします。このあと、複素解析というのをやるそうですが、それだと楽しいでしょうか?

  • 大学数学における計算力をつける方法

    大学数学の基礎的計算力がつけたいです。 ・線形代数、微分積分 ・ベクトル解析 ・複素系いろいろ ・フーリエ解析 などなど。どのような手順・方法で身に付けるのが効率いいと思いますか? 体系的に学びやすい順序とかはありますか? それとも、かたっぱしからやるしかないのでしょうか?

  • 古典物理学各分野に必要な数学について

    理工系大学1年の者です。古典物理学各分野に必要な数学が分からず困っています。物理学に必要でない数学はないそうなのですが、古典物理学入門のレベルで古典物理学各分野(力学・波動と光・熱力学・電磁気学)を学ぶ前に勉強した方が良い必要な数学とは何なんでしょうか?自分なりに物理数学の本の内容などを調べてみると、微分積分・線形代数学(ベクトルと行列)・ベクトル解析・常微分方程式・偏微分方程式・複素解析・フーリエ級数・フーリエ変換・ラプラス変換というものが必要だとまでは分かりました。ですが、それぞれどの分野で必要となる数学分野なのかが分かりません。(例えば力学にはあれが必要で、電磁気学にはあれが必要で・・・という感じで)。また微分方程式を学ぶ前に、微分積分と線形代数学の勉強が必要であるらしいなど、各数学分野で必要とされる他の数学の分野の予備知識や、それによって決まる数学を勉強する順序が分かりません。 ですので、私のように入門レベルでまず必要な数学、「力学は・・・、電磁気学は・・・を前もって勉強した方が良い」、また「予備知識、それに伴う数学の勉強の順序は・・→・・→・・」といった感じでアドバイスをお願いします。また私が何か勘違いをもししていたら、その指摘もお願いします。 よろしくお願いします。

  • 機械学習エンジニア

    機械学習エンジニアになるためには、数学の知識は必須ですか?大学は機械系だったので、線形代数・微分積分・微分方程式・ラプラス変換などは学習済みです。

  • 数学の問題が物理用語を用いて解かれるものはありますか?

    物理の問題が数学用語を用いて解かれることは多々あります。 それは物理数学と呼ばれる分野で、wikipediaによると、 ベクトル解析、テンソル解析、微分方程式、常微分方程式、偏微分方程式、フーリエ級数、フーリエ変換、ラプラス変換、微分幾何学、群論、特殊関数、複素解析、複素関数 などがあります。 では、数学の問題が物理用語を用いて解かれるものはあるのでしょうか? 物理用語とは、力、質量、運動量、運動エネルギー、電流、電圧、磁荷などです。 ペレルマンによるポアンカレ予想の証明には、熱量・エントロピーなどの物理的な用語が登場する、と聞いたことがありますが、それ以外のわかりやすい具体的な例を教えていただければありがたいです。

  • 大学院の入試(数学)の勉強について

    大学院の入試(数学)の勉強について  私は今、大学3年生で食品系の学科(生化学が中心)にいるのですが、大学院の独立研究科の物理化学の分野に進学しようと考えています。  そこの入試に出る数学について、どのように勉強するべきか悩んでいます。  大学受験の時は数学II・Bまでしか受けず、大学のカリキュラムでは微分積分、線形代数を少しかじった程度です。どちらかというと数学の知識は疎いです。  入試の出題範囲は線形代数、微分積分学、ベクトル解析、線形常微分方程式、複素積分となっています。  勉強していくにあたって、まずはあやふやな高校数学から始めるべきだと考えております。高校の教科書が理解できれば、大学教養レベルに進んでも問題ないでしょうか?  また数学の勉強にお勧めな書籍があったら教えていただけると助かります。

  • ロボットの運動を解析するために必要な数学的知識

    ロボットアームなどのロボットの運動を解析するために必要な数学的知識は何か教えてください.下記が理解できていれば下地としては十分でしょうか? ・線形代数 ・解析学 ・微積分学 ・ベクトル解析 ・微分方程式

  • 大学の数学科の数学

    私は今、物理科4年生で理論物理を学んでおり、大学院に進学予定です。 そのためかなり高度な数学も学ぶ必要があり、今苦心しているところです。 私はまだ学部生なので、そこまで高度なことは学んでないのですが、 群論、微分幾何、リーマン幾何学、リー代数、トポロジー、ホモロジー、ホモトピー、ルベーグ積分、ヒルベルト空間論、位相、多様体 などという言葉を研究室内でよく耳にするので、恐らくこういうのを今後学んでいかなければならないのだと思います。 しかし、私は、物理数学として学部時代に少し学んだだけで、ちゃんと体系的に学んできたわけではないので、数学科の人が何をどういう順番で学んでいるのかよく知りません。 上にあげたような分野も、それを学ぶ前に前提として学んでおかなければならないことが何なのかが全く分かりません。 そこで質問なのですが、数学科の人たちはどのような科目をどのような順番で学んでいるのでしょうか?そして数学科の人が卒業するまでに求められる範囲というのはどのへんまでなんでしょうか? 例えば物理学科だったら、すべての学生に求められる範囲(とその順番)は 力学 電磁気学 物理数学(微積分・線形代数・ベクトル解析・フーリエ解析・複素解析・確率・統計) ↓ 特殊相対性理論 解析力学 熱力学 ↓ 量子力学 統計力学 といった感じだと思います。 色んな大学の数学科のホームページのカリキュラムのところを見たのですが、 「代数1」「解析1」みたいな感じの名前ばっかりで、中身がなんなのかは分からないのが多いです。 そいういう大雑把な名前ではなく、フーリエ解析とか群論、みたいにある程度具体的に教えていただけると助かります。 あと、数学の体系についても少し教えてもらえるとうれしいです。 私の理解だと、数学の分野は大きく分けて、 代数学・解析学・幾何学・集合論・確率統計・情報理論 に分かれると思うのですが、大体合ってますか? 例えば線形代数は代数学、微積は解析学に入りますが、例えばフーリエ解析や複素解析はどこに入るのでしょうか?解析ってついてるくらいだから解析学ですかね? 位相やヒルベルト空間論や離散数学はどこに入りますか? また、幾何学や集合論にはどういうのが含まれるのでしょうか?特に学部レベルだと何をやるんでしょうか? 色々質問しましたが、答えたいものだけ答えていただくのでも構いませんのでよろしくお願いします。 長くてすみません。

  • 量子力学を学ぶのに確率論は必要でしょうか

    男子大学2年生。 工学部ですが量子力学を独学したいと考えています。 解析力学を勉強しているのですが、数学の理解不足かなかなか前に進みません。 微積分と線形代数、複素解析は必要だと分かるのですが、他に常微分方程式や偏微分方程式の知識や群論の知識も必要とか。 確率解釈も興味があるのですが、確率論も必要なんでしょうか? 勿論知っているに越したことは無いと思うのですが・・・・。 アドバイスください。