変数分離法による波動方程式の解法

このQ&Aのポイント
  • 変数分離法を用いることで、1次元および2次元の波動方程式を解くことができます。
  • 1次元波動方程式では、u(x,t)をX(x)*T(t)の積で表すことで微分方程式を分離し、各変数に対する微分方程式を解くことができます。
  • 同様に、2次元波動方程式では、u(x,y,t)をX(x)*Y(y)*T(t)の積で表すことで微分方程式を分離し、各変数に対する微分方程式を解くことができます。
回答を見る
  • ベストアンサー

波動方程式における変数分離法について

まずu(x,t)の1次元波動方程式{((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}について ここでもし、u(x,y)がxの関数X(x),Tの関数T(t)の積u(x,y)=X(x)*T(t)で表すことができればこの微分方程式を解くことができる。 まずu(x,y)=X(x)*T(t)を代入すると、 {((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}はX*(T'')=(v^2)*(X'')*Tとなり、 これを(v^2)*X*Tで割ると{T''/(v^2)*T}=(X''/X)となる。 この式の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない。そしてこの定数AについてA<0が成り立つ。 次にu(x,y,t)の2次元波動方程式 {((∂^2)u)/(∂t^2)}=(v^2)*[{((∂^2)u)/(∂x^2)} + {((∂^2)u)/(∂x^2)}]についても同様にu(x,y,t)がxの関数X(x),Yの関数Y(y),Tの関数T(t)の積X(x)*Y(y)*T(t)で表すことができればこの微分方程式を解くことができる。 u(x,y,t)=X(x)*Y(y)*T(t)を上の2次元波動方程式に代入すると、 X*Y*T''=(v^2)*[{(X'')*Y*T}+{X*Y*(T'')}]となり、 この両辺を(v^2)*X*Y*Tで割ると、{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}となる。 この式の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとなる必要がある。そしてA<0でなければならない。 ※以上が変数分離法による1次・2次波動方程式を解く手順ですが、まず1次について「{T''/(v^2)*T}=(X''/X)の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない」というのは一体どういう意味なのでしょうか? もし左辺がXのみの式でなかったら、例えばXとYの式だったら=定数Aとはおけないのでしょうか? 同じく2次の場合についても、「{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとならなければならない」とありますが、これもどういう意味なのでしょうか? 詳しいかた教えてください。お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

大したことはありません。以下のようなことを言いたいだけです。 ★命題1  任意の関数 F(x), G(y) について   全ての (x,y) で F(x) = G(y)  ならば、   F(x) = G(y) = A, 但し A は定数. (∵)  A(x,y) := F(x) = G(y) とすると、  G(y) は x 依存性がないので A は x に依存しない。  また、F(x) は y 依存性がないので A は y に依存しない。  つまり、A(x,y) は x にも y にも依存しない定数である■ ★1 > 「{T''/(v^2)*T}=(X''/X)の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない」というのは一体どういう意味なのでしょうか? 命題1と同様に、  左辺はTのみの式、右辺はXのみの式  → 左辺は t のみの関数、右辺は x のみの関数  → 左辺は x に依存しない、右辺は t に依存しない  → この式は x にも t にも依存しない定数である と考えれば良いです。 ★2 > もし左辺がXのみの式でなかったら、例えばXとYの式だったら=定数Aとはおけないのでしょうか? 右辺に y が登場しなければ定数Aとおけます。なぜなら、同様にやってみると:  左辺は x, y のみの関数、右辺は t のみの関数  → 左辺は t に依存しない、右辺は x, y に依存しない  → この式は x にも y にも t にも依存しない定数である という具合にできます。 ★3 > 「{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとならなければならない」とありますが、これもどういう意味なのでしょうか? 「★2」の議論の右辺と左辺を入れ替えた物に対応します。因みに、この場合 X''/X = T''/(v^2 T) - Y''/Y, Y''/Y = (略) などとも変形できるので、X''/X = 定数B, Y''/Y = 定数C (ただし、A = B + C) 等の様になります。一般化すると次の様になりますかね: ★命題2  関数 F_1, …, F_n について、   任意の x_1, …, x_n に対し Σ[i=1~n] F_i(x_i) = 0 …(2.1)  が成り立つならば、   F_i(x_i) = A_i = const, (i=1~n) かつ Σ[i=1~n] A_i = 0. (∵)  任意の整数 k (1≦k≦n) について、式(2.1)より、   F_k(x_k) = - Σ[i≠k] F_i(x_i)  となる。左辺は x_i (i≠k) に依存しない。右辺は x_k に依存しない。従ってこの式は x_1, …, x_k のどの変数にも依存しないので、   F_k(x_k) = A_k = const  とおける。元の式(2.1)に戻ると Σ[i=1~n] A_i = 0 も直ちにでる■

bohemian01
質問者

お礼

回答していただきありがとうございます。 もう一度良く考えてみるとご指摘のとおり、定数になる以外ありえない事が分かりました。 A(x,y)= F(x)と考えるとA(x,y)はxの関数になり、A(x,y)=G(y)と考えるとA(x,y)はyの関数になる。この条件を両方満たすA(x,y)は定数以外考えられないですね。 さらに拡張して関数 F_1, …, F_n について、   任意の x_1, …, x_n に対し Σ[i=1~n] F_i(x_i) = 0が成り立つならば、確かにF_i(x_i) = A_i = const, (i=1~n)となることが分かりました。

その他の回答 (1)

  • bran111
  • ベストアンサー率49% (512/1037)
回答No.1

>まず1次について「{T''/(v^2)*T}=(X''/X)の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない」というのは一体どういう意味なのでしょうか? もし左辺がXのみの式でなかったら、例えばXとYの式だったら=定数Aとはおけないのでしょうか? 1次元つまりu=u(x,t)に限定して議論しているわけです。Yなんか想定していません。 >同じく2次の場合についても、「{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとならなければならない」とありますが、これもどういう意味なのでしょうか?  2次元つまりu=u(x,y,t)として議論しているわけです。質問の内容は何ですか。

関連するQ&A

  • 1・2次元の波動方程式

    ∂^2u/∂^t2=c^2∂^2u/∂x^2 を以下の境界条件の下で解け。 (1)x=0でu=0、x=Lでu=0 (2)x=0でu=0、x=Lで∂u/∂x=0 という問題をやっているのですが、この微分方程式の解き方がわかりません。1、2階の線形、非線形微分方程式は習ったのですが、この微分方程式は、左辺はtで微分していて、右辺はxで微分していて、どういうことなのかわかりません。また、これが2次元になった場合はどのようにすればいいのでしょうか?

  • 波動方程式を満たす証明

    波動方程式を満たす証明 u(x,t)=ae^i(ωt-kx+Φ)=ae^(iΦ)e^(iωt)e^(-ikx) 上記の式が2次元の波動方程式を満たす証明を教えてください。

  • 波動方程式について

    現在波動方程式についての勉強をしています。 授業では d^2u(x,t)/dt^2=E/P*d^2u(x,t)/dx^2 (Eはヤング率、Pは物体の密度) という式で教わっているのですが、ネット「波動方程式」と検索してもこのような式で書いているところは一つもなく、もっとややこしい複雑な式を書いているサイトばかりでした。 はたしてこの数式も波動方程式と言うのでしょうか? そして方程式というからには何かしら解というものがあると思うのですが、この波動方程式の解はいったい何なんでしょうか? 解説よろしくお願いします。

  • 波動方程式の導き方

    電磁気学に関する質問です。次のように、z方向に伝搬定数βで進行し、角周波数ωで進行する波について E=E0(x,y)exp(jωt-βt)・・・(1) H=H0(x,y)exp(jωt-βt)・・・(2) 直交座標系(x,y,z)における波動方程式と円筒座標系(r,φ,z)における波動方程式を求めたいです。 (1),(2)式をマクスウェルの法則に代入して、x,y,z成分に関する式を求めて、式変形によりEx,Ey,Hx,HyをそれぞれEz,Hzを用いて導く事はできました。その後、どのような計算方法で波動方程式を求めればいいのかわかりません。できるだけ計算過程を詳しく教えていただけないでしょうか?よろしくお願いします。

  • 偏微分方程式を変数分離で解きたいんですが・・

    次の偏微分方程式を解きます。   ∂/∂x{e^ax・e^by・∂T(x,y)/∂x}+∂/∂y{e^ax・e^by・∂T(x,y)/∂y}=0 変数分離T(x,y)=X(x)・Y(y)を導入すると   {∂^2X(x)/∂x^2+a∂X(x)/∂x}/X(x)+{∂^2Y(y)/∂y^2+b∂Y(y)/∂y}/Y(y)=0 このような式が得られました。第一項と第二項をそれぞれ次のような定数とおきます   {∂^2X(x)/∂x^2+a∂X(x)/∂x}/X(x)=-{∂^2Y(y)/∂y^2+b∂Y(y)/∂y}/Y(y)=-k^2(負),0,k^2(正)―(1) (1)式の右辺が-k^2の場合について考えます。X(x)について次の式が成り立ちます。   ∂^2X(x)/∂x^2+a∂X(x)/∂x+k^2・X=0 ―(2) これは定数係数微分方程式なので判別式D=a^2-4k^2によって解が異なる。 ここで質問なんですが(2)式の解X(x)をどのように表したらいいのでしょうか?場合わけを一つの式で表現する方法がよくわからないんです。

  • 変数分離法の計算

    問題を2つ解いたのですが解答がでません。どこが間違っているか教えてもらえないでしょうか? 一つ目はこの前に質問して回答を見て納得し、自分でやって答えも出たのですが今やってみると解答と違っていました dy/dx=(1-y^2)/(1-x^2) dy/(1-y^2)=dx/(1-x^2) 部分分数にして両辺を積分すると log((y-1)/(y+1))=log((x-1)/(x+1))+logC logをはずして計算をすると y=(1-C+Cx)/(1+C-Cx) になるのですが解答は y=(x+C)/(1+Cx) になってました。積分定数の置き方が違うと思うのですがお願いします もう一つは (2x^3-y^3)ydx-x(x^3-2y^3)dy=0 dy/dx=(y/x)*(2x^3-y^3)/(x^3-2y^3) =(y/x)*(2-(y/x)^3)/(1-2(y/x)^3) y/x=u と置いて dy/dx=u+xu' よって u+xu'=u*(2-u^3)/(1-2u^3) 1+(x/u)u'=(2-u^3)/(1-2u^3) (1/x)dx=((1-2u^3)/u*(1+u^3)du 左辺を積分して 左辺=logx 右辺は部分分数にすると 右辺=(a/u+b/(1+u)+c/(1-u+u^2))du a=1 b=-3 c=-3より 右辺=1/u-(3/(1+u))-(3/(1-u+u^2))du ここで-(3/(1-u+u^2))の積分ができません 両方とも計算の仕方が間違っているのでしょうか?

  • 波動方程式について

    物理でよく見かける簡単な波動方程式 y=Asin2π(t/T-x/Λ) があります。この式の意味はわかるのですが、この一般的な式になぜcosが入っていないのか、いまいち納得できません。 また、フーリエ変換を勉強しているとき、振幅の方程式で A(x,t)=A'cos{2π(t/T-x/Λ)} という式がでてきました。これにはなぜsinが入っていないのでしょうか。 y=A(sin~+cos~)というような式であった方がいろんな波を表される気がするのですが・・・。どちらか片方で都合がよい理由などがもしあるなら教えてください。よろしくお願いします。

  • 古典的な波動方程式

    古典的な波動方程式 (∂^2)u/∂x^2=1/(v^2)・(∂^2)u/∂t^2 これに u(x,t)=Ψ(x)cosωt を代入すると (∂^Ψ)u/∂x^2+(ω^2)/(v^2)Ψ(x)=0 になるとあるのですが どのように計算すれば良いのでしょうか? 代入すると (∂^2)Ψ(x)cosωt/∂x^2=1/(v^2)・(∂^2)Ψ(x)cosωt/∂t^2 となり、これ以上すすめませんでした。

  • ナブラの計算(波動方程式)

    物理電磁気学の波動方程式のナブラの計算 波動方程式 ∇^2 E=ε_0 μ_0 (∂^2 E)/(∂t^2 )   ∇^2=∂^2/(∂x^2 )+∂^2/(∂y^2 )+∂^2/(∂z^2 )   平面波 E=E_0 e^(i(k・r-ωt))   ik・r =i(k_x x+k_y y+k_z z) 平面波の式を波動方程式に代入すると -k^2 E_0 e^(i(k・r-ωt))=-ω^2 ε_0 μ_0 E_0 e^(i(k・r-ωt)) となる。 この左辺がどのようにしてこの値になるかを教えてください。よろしくお願いします。

  • 波動方程式の解のうち2次式が省かれるのはなぜ?

    波動方程式の解のうち2次式が省かれるのはなぜでしょう。 変数分離法で解けるのはわかるのです。けれど、 時間tと位置xの波動方程式 ∂^2 f /∂ t^2 = - a ∂^2 f /∂x^2 だとして、 f(x,t)=x^2 - a t^2 のような解も成り立つはずですが、これに触れている教科書等を 見たことがありません。三角関数の和の話ばかりです。 なぜでしょう? 「波動」にならないから、といった、答えの対象を波動に限定しているからでしょうか? しかし、数学の問題だとすると、 境界条件さえ満たせばこれも解だと思うのです。 何か単純な勘違いをしているのでしょうか?