• 締切済み
  • すぐに回答を!

波動方程式について

現在波動方程式についての勉強をしています。 授業では d^2u(x,t)/dt^2=E/P*d^2u(x,t)/dx^2 (Eはヤング率、Pは物体の密度) という式で教わっているのですが、ネット「波動方程式」と検索してもこのような式で書いているところは一つもなく、もっとややこしい複雑な式を書いているサイトばかりでした。 はたしてこの数式も波動方程式と言うのでしょうか? そして方程式というからには何かしら解というものがあると思うのですが、この波動方程式の解はいったい何なんでしょうか? 解説よろしくお願いします。

  • 619
  • お礼率88% (62/70)

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数3
  • 閲覧数302
  • ありがとう数4

みんなの回答

  • 回答No.3
  • mmky
  • ベストアンサー率28% (681/2420)

参考程度に d^2u(x,t)/dt^2=E/P*d^2u(x,t)/dx^2 は間違いなく波動方程式ですね。E/P=v^2 (v^2:伝播速度の二乗)と置けば、d^2u(x,t)/dt^2=v^2*d^2u(x,t)/dx^2となり標準の波動方程式ですね。ただし,E/P が物理単位で速度の二乗の単位(m^2/s^2)であることは確認する必要がありますね。一般解は進行波形の波ですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

確かにそんなことが次元解析とかいう項目に書いていた気がします。親切な説明ありがとうございます。

  • 回答No.2
  • reply
  • ベストアンサー率16% (34/204)

http://hagi.k.u-tokyo.ac.jp/~mio/note/komaba/PhysMath.html からダウンロードできるPDFファイルに書かれています。 もしファイルのダウンロードが不安でしたら、開かないでください。 講義資料 No.1 u(x,t)は(1)の式ですね。 問題の式は(22)式です。 これを整理した(23)式を波動方程式と呼びますので、(22)もまあ、波動方程式と呼んでいいのでしょう。 解のほうですが、すいません、すでにイミを忘れています。

参考URL:
http://hagi.k.u-tokyo.ac.jp/~mio/note/komaba/PhysMath.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

以前にもPDFファイルは開いたことがあるので早速見てみたいと思います。ありがとうございます。

  • 回答No.1
  • KENZOU
  • ベストアンサー率54% (241/444)

>ネット「波動方程式」と検索 弾性体の波動方程式ですから「弾性体」というキーワードで検索されれば、、、 下記URLを一度覗いてみてください。 http://laboratory.sub.jp/phy/12.html#3 http://www.enveng.titech.ac.jp/morikawa/lecture/koenkai/00jgr/node6.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございます。 弾性体で検索はしたことがないのでやってみたいと思います。

関連するQ&A

  • 波動方程式を満たす証明

    波動方程式を満たす証明 u(x,t)=ae^i(ωt-kx+Φ)=ae^(iΦ)e^(iωt)e^(-ikx) 上記の式が2次元の波動方程式を満たす証明を教えてください。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 波動方程式

    量子化学の授業で波動関数の式(ψ´ψ:電子密度) E=∫ψ´Hψdx/∫ψ´ψdx ψ=√2/L・sin(nπ/L)x の二つの式を使って、固有値を求めたみたいなんですが、いまいち導き方がわかりません。いったい固有値はどのような値になるのでしょうか?

  • 波動方程式

    以下の問題について質問します。 波動方程式∂^2φ/∂t^2=∂^2φ/∂x^2の解で初期条件φ(x,0)=exp(-x^2) φt(x,0)=-xexp(-x^2)を満たすものを求めよ。 与えられた方程式(波動方程式)と初期条件を、それぞれ x についてフーリエ変換する。そうすると t に関して二階の常微分方程式が得られるので、それを解く。最後に、得られた解を x について逆フーリエ変換すれば答が得られるとのことですが初めの方程式(波動方程式)と初期条件を、それぞれ x についてフーリエ変換するという所から躓いています。どなたか途中の計算過程を教えていただけないでしょうか。

  • 波動方程式の解のうち2次式が省かれるのはなぜ?

    波動方程式の解のうち2次式が省かれるのはなぜでしょう。 変数分離法で解けるのはわかるのです。けれど、 時間tと位置xの波動方程式 ∂^2 f /∂ t^2 = - a ∂^2 f /∂x^2 だとして、 f(x,t)=x^2 - a t^2 のような解も成り立つはずですが、これに触れている教科書等を 見たことがありません。三角関数の和の話ばかりです。 なぜでしょう? 「波動」にならないから、といった、答えの対象を波動に限定しているからでしょうか? しかし、数学の問題だとすると、 境界条件さえ満たせばこれも解だと思うのです。 何か単純な勘違いをしているのでしょうか?

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。

  • 拡散方程式について

    一次元の拡散方程式∂P/∂t=D∂^2P/∂x^2で初期条件がP(x,0)=δ(x)のとき、方程式の解はP(x,t)=1/√4πDtexp(-x^2/4Dt)で与えられ、これは分散が2Dtであるようなガウス分布である。「この確率分布に関する物理量Xの平均を<X>=∫∞~-∞ XP(x,t)dxとすると、<x>=0,<x^2>=2Dtとなる」ようなのですが、「」の部分が理解出来きません。どなたか教えてください。

  • 大学数学の方程式

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 波動方程式の差分法による境界条件

    波動方程式(ρ*∂^2u/∂t^2=T*∂u^2/∂x^2)を差分法で、境界条件をx=0とx=Lで自由条件(T*∂u/∂x=0)とした場合を考えています。 上の波動方程式を差分化すると、 (u[n+1][j]-2*u[n][j]+u[n-1][j])/(dt^2)=(u[n][j+1]-2*u[n][j]+u[n][j-1])/(dx^2) の形になると思います。(T/ρ=1.0とし、nは時間、jは距離の格子点として考えています) 初期条件は適当な形状を与えます。 両端を固定条件(u[n][0]=0,u[n][xp]=0,)とした場合はうまく解を得ることが出来ました。(xpはx=Lでの格子点) 問題は自由条件(T*∂u/∂x=0)すなわち、 T*(u[n][1]-u[n][0])/dx=0、T*(u[n][xp+1]-u[n][xp])/dx=0 となる場合、これをどのように使用したらよいのでしょうか? または根本的に考え方が間違っているのでしょうか? 本当に困ってます。よろしくお願いいたします。 内容が不十分の場合は補足要求お願いします。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・