• 締切済み
  • すぐに回答を!

順序数の質問です。

[集合の公理系ZF]において、 2つの順序数A,Bが、順序同型となる場合、AとBは(集合として)等しい。 A≅B⇔A=B これの証明を教えて下さい。 (書籍に証明が記載されていなかったので) 詳しい方お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数141
  • ありがとう数0

みんなの回答

  • 回答No.1
  • tmpname
  • ベストアンサー率68% (191/278)

方針だけ示すと、 fを AからBへの順序同型とする。 f(x)≠xであるものがあったとして、そのような最小のものを取る。 y∈xであればy = f(y)であって、yはAにもBにも含まれる。 順序数がそれより小さい順序数全体であることに注意すると、 x = {y∈A | y∈ x}、f(x) = {y'∈B|y' ∈ f(x)}である。 fが順序同型だから y∈x⇒ y = f(y) ∈ f(x)であって、x = {y∈B|y∈ f(x)} = f(x)となり矛盾する。 従ってA={x|x∈A} = {f(x) | x∈A} ⊆B。逆向きも同様。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ラッセルのパラドックスと公理的集合論

    当方、数学についてはシロウトですが、お許しください。 集合論関係の本を読んでいてどうしてもわからないことがありまして。 ラッセルのパラドックスというのがありますよね。 このパラドックス自体は飲み込めたつもりですし、そういった類のパラドックスを避けるために公理系を整備するという発想も、まあ判る気がします。 が、例えばZF公理系ならば、どうしてラッセルのパラドックスが回避可能なのかがよくわからないのです。外延性公理から正則性公理まで眺めてみても、なぜこの公理系を採用すればパラドックスが起きないのかピンときません。 どなたかお詳しい方、解説をお願いできませんでしょうか。

  • 順序を保つ写像

    数学初心者です。 2つの半順序集合(X,<),(Y,<<)の間の写像f:X→Yが順序同型写像とは、(a<b⇒f(a)<<f(b))だと学びました。しかし、fの逆写像f^(-1)が順序を保つ、というのは必要でしょうか?定式化して、 「半順序集合(X,<),(Y,<<)の間の写像f:X→Yについて、fが全単射でfが順序を保つ写像であるがf^(-1)は順序を保たない。」 このような例を教えてください。集合の表現は変えてくださって結構です。

  • ZFCが一番少ない公理系ではない?

    数学基礎論の本でZFCは一番少ない公理系(9つ) 外延性公理, 空集合の公理, 対の公理, 合併集合の公理, 無限集合の公理, べき集合の公理, 置換公理, 正則性の公理, 選択公理 と見かけましたが ZFCは図式は一つずつだが無限個の公理から成り立っている公理系だと聞きました。 もし,無限個だとすると一番少ない公理系で無限個とは意味不明だと思います。 どのように解釈したらいいでしょうか? それと公理図式と公理の違いは何なのでしょうか?

  • 全ての集合の定義を元とする無限集合は定義可能?

    年末以来ずっとべき集合というものを考えていたのですが、このべき集合というものがある限り、すべての集合を元とする無限集合を定義できない事が判りました。 すなわち、 今、考えられる全ての集合を元とする無限集合Xが定義可能と仮定する。 すると、その無限集合からべき集合Power(X)が必ず定義可能である。 Power(X)はXの元になっていないために、最初の仮定が間違っていることが証明される。 この事実が意味する事は、 「集合Xからべき集合P(X)を造ることが出来る」-----(A) 「集合を元とした無限集合Xを定義することができる」---(B) 暗黙の前提としている公理系では(A)と(B)が両立しないという事になります。 この袋小路はどう考えればよいのでしょうか? (A)が常に真ではない? (B)が常に真ではない? (A)が偽の場合のみ(B)が真である? (A)が真の場合は(B)が偽である? 暗黙の公理系になにか公理を見落としている(不足している)? 考えるヒントを頂ければ助かります。

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

  • 順序対(x,y)の定義の記号について

    こんにちは.順序対について質問します. 順序対を求めることは,分かるのですが,下記の順序対の定義の意味がわかりません. x,yの順序対の定義は, (x,y)≡{{x},{x,y}} と定義されます. たとえば, X={a,b},Y={c}という集合である場合, 順序対X*Y={(a,c),(b,c)}となりますが, この定義は,どのように解釈すればよいのでしょうか? (前提) 集合X,Yの2つの要素x∈X,y∈Yについて,{x,y}は集合となる.また,{x}={x,x}も集合となるので,{{x},{x,y}}も集合となる.

  • 全順序集合Aが整列集合でない⇔Z(-)⊂A

    次の問題を解いているのですが…。 よろしくお願い致します。(i)の必要性の証明で困ってます。 [[問] 次の(i),(ii)を証明せよ。Z(-)を負整数全体の集合とする。 (i) 全順序集合Aが整列集合でない⇔Z(-)⊂A. (ii) Aが全順序集合且つAの任意の可算な部分集合が整列集合⇒Aは整列集合 [(i)の証] 十分性を示す。 A=Z(-)と採れば{2z;z∈Z(-)}⊂Aでしかもこの部分集合は最小値を持たない。 よってAは全順序だが整列集合とならない。 必要性を示す。 ∃B⊂A;minBが存在しない。その時,Z(-)⊂Aを言えばいいのですがどうすればいえますでしょうか? [(ii)の証] 対偶「Aは整列集合でないならば(Aは全順序集合でない∨(∃B⊂A;Bは可算だが非整列))」となる。 もし,Aが非整列ならAは全順序ではない場合もありうる。 もし,Aが非整列だがAは全順序の場合,∃B⊂A;(Bは可算∧minBが存在しない)でなければならない。これは,(i)の必要性よりZ(-)⊂A (Z(-)は可算)と言えるのでB:=Z(-)と採ればよい。 この時,B非整列なので(∵最小値を持たないBの部分集合としてBを採ればよい) Aが全順序集合且つAの任意の可算な部分集合が整列集合⇒Aは整列集合 が示せた。となったのですがこれで正しいでしょうか?

  • 離散数学の半順序集合に関する問題

    離散数学の半順序集合に関する問題 離散数学の問題が解けずに困っています。 以下の問題を詳しく解説を交えて解いていただけるとありがたいです。 Aを集合とするとき、半順序集合(P(A),⊆)について、次の(1)(2)に答えよ。 (1)X,Y∈P(A)の上限、下限をそれぞれsup{X,Y}、inf{X,Y}とする。 このとき、sup{X,Y}=X∪Y      inf{X,Y}=X∩Y をそれぞれ証明せよ。 (2)半順序集合(P(A),⊆)は束であるかどうか述べよ。 以上です。よろしくお願いします。

  • 順序集合などに詳しい方の回答お待ちしています。かなり困ってます・・・。

    (A_α)_α∈Λ(ラムダ)を、整列集合Λを添数集合とする集合族として、各A_αはe_αを最小元とする整列集合とする。 直積Π_[α∈Λ]A_αの元a=(a_α)_α∈Λで、Λの高々有限個の元αを除けばa_α=e_αであるようなものを考え、そのようなa全体の作るΠ_[α∈Λ]A_αの部分集合をAとする。 Aの相異なる2元a=(a_α)、a'=(a'_α)をとる。 a_α≠a'_αとなるαは有限個しか存在しないから、 β=max{α∈Λ|a_α≠a'_α}が存在する。 このとき、 a_β<a'_βならばa<a' a_β>a'_βならばa>a' のように、写像a、a'の間に順序を定義する。 このようにしてAに順序を導入する。 [問]この順序についてAは整列集合となることを証明せよ。 (証) 次の補題を利用する。 [補題] 順序集合Aの元の列(a_n)_n∈Nで、a_1>a_2>a_3>・・・>a_n>・・・となるものをAにおける降鎖という。Aが全順序集合の場合、Aが整列集合⇔Aにおける降鎖は存在しない。 さて、Aに導入した順序について、Aが全順序集合となることは容易に示される。よって、上の補題により、A=ΠA_αに降鎖が存在しないことを示せばよい。 仮に、Aに降鎖a^(1)>a^(2)>・・・>a^(n)>・・・が存在すると仮定し、 a^(n)=(a^(n)_α)_α∈Λ max{α|a^(n)_α≠e_α}=α_nとおく。 するとα_1≧α_2≧・・・≧α_n≧・・・である。 (実際、たとえばα_1<α_2とするとmax{α|a^(2)_α≠e_α}=α_2で、 α_1より大きなαに対してはa^(1)_α=e_αであるから a^(1)_(α_2)=e_(α_2)<a^(2)_(α_2)つまりa^(1)<a^(2)となり矛盾。したがってα_1≧α_2となること等により。) しかし、{α_n|n∈N}は整列集合Λの部分集合なので整列集合であるから、補題より(α_n)は降鎖でない。したがってあるn0∈Nが存在して α_n0=α_(n0+1)=・・・=α_(n0+n)=・・・となる。 この元をα~とおく。 すると、Aでの降鎖の存在の仮定より、 a^(n0)>a^(n0+1)>・・・>a^(n0+n)>・・・ であったが、これはAでの順序の定義より、 a^(n0)_α~>a^(n0+1)_α~>・・・>a^(n0+n)_α~>・・・ である。・・・(☆) しかるにこれは整列集合A_α~における降鎖が存在することとなって (補題より)A_α~が整列集合であることに矛盾。 したがってAには降鎖は存在しない。つまり、Aは整列集合である(終) のような証明が[集合位相入門/松坂和夫]という本に書かれていました。(☆)より前は理解できるのですが、(☆)の部分だけどうしてもわかりません。 >これはAでの順序の定義より、 >a^(n0)_α~>a^(n0+1)_α~>・・・>a^(n0+n)_α~>・・・ >である。 ということは、Aでの定義から、証明中で定めたα~が この質問文の冒頭で述べたβとなっているってことですか? だとしてもなぜだかわかりません・・・。 本当にいくら考えてもまったくわからず困っています。 どなたか、わかる方がいらっしゃったら 回答よろしくお願いしますm(_ _)m ※記号がたくさんあって見にくいと思います。 もし、おなじテキストを持っていたら、そちら(p125)を見て貰えると助かりますが・・・。あと、証明はところどころテキストには書かれていない文章を自分で補っている箇所もあります。

  • 数学の無矛盾性とはどんなものですか?

    そりゃ、公理系が矛盾を一つも証明しないことに決まっていますけど、いったいどんな感じになったら「数学の無矛盾性を証明した」になるんですか、教えてください! やっぱりゲーデル命題を使って論証するんでしょうか?