半順序集合になるようにせよ

このQ&Aのポイント
  • 集合Aと二項関係Rの組が与えられていますが、Rに対して操作を行って半順序集合にする問題です。
  • 問題では、反射律、反対称律、推移律を満たすように操作を行う必要があります。
  • 操作は最大で除去は2回、追加は1回まで行うことができます。
回答を見る
  • ベストアンサー

「半順序集合になるようにせよ」という問が解けません

急ぎです。 次の問が全く解けません。どなたかお願いします。 以下の集合Aと二項関係Rの組は順序集合ではないが、Rに対して操作(要素の除去や追加)によって半順序集合(A,R)になるようにせよ(反射律、反対称律、推移律を満たすようにせよ)。なお、行ってよい操作は最大で除去は2回、追加は1界までとする。 A={a,b,c,d,e,f,g} R={(a,a),(a,c),(a,e),(a,g),(b,a),(b,b),(b,e),(c,c),(c,g),(d,b),(d,d),(d,f),(e,e),(e,g),(f,f),(f,g),(g,g)} 除去する組:(  ,  ) 除去する組:(  ,  ) 追加する組:(  ,  ) 宜しくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

シャレた問題ですねー。 Aをノード、Rをアークとする有向グラフを描く。で、半順序関係の定義に照らして、どのアークは活かせるか、どのアークは捨てるしかないか。これはちょっとしたパズルです。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「全く解けない」といいますが, ではなぜ「全く解けない」のか, その原因はわかっているのですか?

chopu_z
質問者

お礼

数日前に人に頼まれたのですが、時間等がなくしっかり調べて正確な回答を渡すことができません。 結局、安請け合いをするもんじゃありませんでした。

関連するQ&A

  • 全順序集合と半順序集合

    x=(x1,…xn) , y=(y1,…,yn) ∈R^n に対して x≦yを Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)y(i) (k=1,2,…,n) によってR^nに関係≦を導入する。 R^nはこの≦に関して半順序集合になっていることを示せ。 また、x≦(にならない)y , y≦(にならない)x となるx,yの例をあげよ。 という順序集合の問題です。 反射的・反対称的・推移的の3つを示せば良いのは分かるのですが、どのように書いて良のか分かりません。 例:推移的を示す 任意のx=(x1,…xn) , y=(y1,…,yn) , z=(z1,…,zn) ∈R^n に対して Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)y(i) かつ Σ(i=1からkまで)y(i) ≦ Σ(i=1からkまで)z(i) ならば Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)z(i)  は成り立つ。 このように、そのまま書けば良いのでしょうか・・・? それから、最後の例をあげよのところは、全順序集合にはならないための反例になっているのだと思いますが、どうしても思いつきません。 ∞を考えるのでしょうか・・・? そもそも全順序集合は半順序集合が成り立つことが前提みたいに習いましたが、反対称的の 任意のa,b∈Xに対して aRb,bRa⇒a=b ここで、aRbとbRaが成り立つことを言ってしまっているので、必ずaRbかbRaになっているような半順序集合は全順序集合という定義も意味がないような気がしてしまいます。 よろしくお願いします。

  • 長文、有限のものの表現の仕方、集合・多重集合・文字列(順序対)

    有限のものがあったとします。 ・重複を許さない、順序を考えない、とします。 たとえば、aとbとcというものがあったとします。 これを表すのには、集合の記号を用いて、 {a,b,c} と表します。 ・重複を許す、順序を考える、とします。 たとえば、a,b,b,aという順にものがあったとします。 これは順序対の記号を用いて、 (a,b,b,a) と表すと思います。 また、文字列とみなして、 abba と表すこともあると思います。0から9の数字と+-記号を用いて、整数を表すのもこれに相当するとおもいます。 順序対の記号は、たとえば http://oshiete1.goo.ne.jp/qa2861763.html にあるように、集合の記号によって定義することもできます。 質問1.では逆に、集合の記号を、順序対の記号によって定義することはできるのでしょうか? ・重複を許す、順序を考えない、とします。 たとえば、aが2個、bが3個、cが1個というものがあったとします。 これは多重集合の考え方ですが、 {|aa,bbb,c|} と表したりするようです。 質問2.多重集合を、集合の記号や順序対の記号を用いて、うまく表すことはできないものでしょうか? ・重複を許さない、順序を考える、とします。 たとえば、a,c,b,d,eという順にものがあったとします。 質問3.しかし、この考え方の具体的な名前、応用例、表し方を知らないので、教えていただきたいのです。 それは順序対の記号を用いて、 (a,c,b,d,e) と表せばいいという方がいるかもしれませんが、その記号だと、重複を許さないという考えを伝えることができないので、よくはないと思うのです。

  • 数学A 集合

    今高1ですが、大学進学を考えているので 大学の入試問題を解いています。 解答を見てもわからない問題があるので、教えて下さい! 分からないところは f(g(x))とg(f(x)) がどういう意味なのかです。 問題は、 2つの関数f(x)=-x+3,g(x)=x^2+5 を考える。 -50以上50以下の整数の集合 A={-50,-49,・・・,-1,0,1,・・・,50} に対し、2つの集合BとCを B={f(x)|x∈A}, C={g(x)|x∈A} により定める。集合Mの要素の個数をn(M)で表す。 D{f(g(x))|x∈A}, E={g(f(x))|x∈A} によって集合D,Eを定めるとき、n(D), n(E)を求めよ。 という問題です。 解答は 集合Dは、 D={f(g(x))|x∈A}={f(x)|x∈C} と考えられるが、xが異なればf(x)の値は異なるから、 n(D)=n(C)=51 集合Eは、 E={g(f(x))|x∈A}={g(x)|x∈B} 集合Bは-47以上53以下の整数の集合で、絶対値の異なる整数は54個ある。よって、 n(E)=54 です。 2003年の近畿大学・理工学部の改題らしいです。 長くなってすみません<(_ _)> おねがいします。

  • ボレル集合族って何ですか???

    ボレル集合族を、イマイチ上手く捉えられません。 頭の悪い自分なりに考えたのですが、 自分の解釈が正しいのか全く分かりません。 指摘お願いします。 ちなみに自分なりの解釈↓ 全体集合Ω={ω1、ω2、・・・・・}  Ωの元の個数はM個 Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・}    Fの元の個数は2^M個で、FはΩのσ加法族 A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。 このBが、ボレル集合族で、ボレル集合族の元をボレル集合という。 つまり↓ Ω={ω1、ω2、・・・・・} F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} A⊂F A={・・・・・・・} B={A、・・・・・・・・・・}         BはAのσ加法族 C={A、B、・・・・・・・・・・}       CはBのσ加法族 D={A、B、C、・・・・・・・・・・}     DはCのσ加法族 E={A、B、C、D、・・・・・・・・・・}   EはDのσ加法族 ・ ・ ・ A∊B∊C∊D∊E・・・で、 B、C、D、E・・・はAを含むσ加法族で、 B、C、D、E・・・のうち最小なものはBなので、BはAのボレル集合族である。 ってことですかね??? よく分からないのは、ボレル集合族の条件に、Ω∊B とありますが、 私の解釈だと、Ω∊B となっていません。 ???って感じです。 ちなみに私の解釈だと、全ての集合には、そのボレル集合族が存在します。 で、ある集合がボレル集合族ということは、その集合の元を集合とする集合があるってことです・・・? 頭が悪いので、むちゃくちゃ簡単に教えてもらわないと理解出来ません。 図書館で確率論の教科書を色々呼んだんですが、難しく書かれてあって、???です。 助けて下さい。

  • 辞書式順序に対応する順序(オリジナル)

    いつもお世話になっています。 ●順列 異なるn個のものから重複を許さないでr個並べる順列の総数をnPrで表します。 ○例 異なる3つのものa,b,cから重複を許さないで2つ並べる方法 3P2=6通り を具体的に表記すると、 (a,b),(a,c),(b,a),(b,c),(c,a),(c,b) と組を使って表記できます。 同じことですが、単射な写像f:{1,2}→{a,b,c}を用いて、 (f(1),f(2))=(a,b),(a,c),(b,a),(b,c),(c,a),(c,b) と表記できます。 さらに逆写像を用いて、 (f^(-1)(a),f^(-1)(b),f^(-1)(c))=(1,2,φ),(1,φ,2),(2,1,φ),(φ,1,2),(2,φ,1),(φ,2,1) と表記できます。 ただし、φは空集合。 ●組合せ 異なるn個のものから重複を許さないでr個選ぶ組合せの総数をnCrで表します。 ○例 異なる3つのものa,b,cから重複を許さないで2つ選ぶ方法 3C2=3通り を具体的に表記すると、 {a,b},{a,c},{b,c} と集合を使って表記できます。 同じことですが、単射な写像f:{1,2}→{a,b,c}の像集合を用いて、 {f(1),f(2)}={a,b},{a,c},{b,c} と表記できます。 さらに逆写像の個数を用いて、 (♯f^(-1)(a),♯f^(-1)(b),♯f^(-1)(c))=(1,1,0),(1,0,1),(0,1,1) と表記できます。 ●重複順列 異なるn個のものから重複を許してr個並べる順列の総数をn^rで表します。 ○例 異なる2つのものa,bから重複を許して3つ並べる方法 2^3=8通り を具体的に表記すると、 (a,a,a),(a,a,b),(a,b,a),(a,b,b),(b,a,a),(b,a,b),(b,b,a),(b,b,b) と組を使って表記できます。 同じことですが、写像f:{1,2,3}→{a,b}を用いて、 (f(1),f(2),f(3))=(a,a,a),(a,a,b),(a,b,a),(a,b,b),(b,a,a),(b,a,b),(b,b,a),(b,b,b) と表記できます。 さらに逆像を用いて、 (f^(-1)(a),f^(-1)(b))=({1,2,3},φ),({1,2},{3}),({1,3},{2}),({1},{2,3}),({2,3},{1}),({2},{1,3}),({3},{1,2}),(φ,{1,2,3}) と表記できます。 ただし、φは空集合。 ●重複組合せ 異なるn個のものから重複を許してr個とる組合せの総数をnHrで表します。 ○例 異なる2つのものa,bから重複を許して3つとる方法 2H3=4通り を具体的に表記すると、 {a,a,a},{a,a,b},{a,b,b},{b,b,b} と表記できます。 ただし、多重集合の意味。 同じことですが、写像f:{1,2,3}→{a,b}の像集合を用いて、 {f(1),f(2),f(3)}={a,a,a},{a,a,b},{a,b,b},{b,b,b} と表記できます。ただし、多重集合の意味。さらに逆写像の個数を用いて、 (♯f^(-1)(a),♯f^(-1)(b))=(3,0),(2,1),(1,2),(0,3) と表記できます。 それぞれ2通りの表記をしましたが、前者は辞書式順序ですが、後者はいったいどういった順序になっているのでしょうか? 今回、後者の表記を書くときは、前者の表記を参考に書きましたが、後者のみを書くとき、どういう順序に気を付けて書いたらいいのでしょうか?

  • 外測度と開集合・閉集合について

    添付の画像について2つ程質問があります。 (下層に画像の問題についての補足のせています) (1)始めのA=∪[k→∞]Akである、のところがなぜ成り立つかがいまいち分かりません。 (文脈から「G^cは閉集合。よって…」とあるので開集合・閉集合の定理の中でA=∪[k→∞]Akが言えるものがあるのかなと探してたのですが分からず…) (2)「もし、Σ[j=1→∞]Г(Dj)<∞であればlim[k→∞]Σ[j≧k]D(Гj)=0である…」の部分、本当はlim[k→∞]Σ[j≧k]Г(Dj)=0(誤植?)かと思うのですが、これもなぜ0になるかが分かりません。 以下画像の問題の補足をします。 問題は 「R^n上の外測度Гと、 R^n の部分集合E1, E2 に対して、d (E1, E2)[距離関数]>0ならばГ(E1UE2)=Г(E1)+Г(E2)が成立しているとする。 このとき A をR^nの部分集合, G を開集合で A⊂GとしAn={x∈A|d(x,G^c)≧1/k} (k=1,2,...) とおくと、 lim[k→∞] Г(Ak)=Г(A) が成り立つ。」 というものです。G^cはRの補集合です。 [証明] 冒頭の証明は「Gが開集合なのでG^cは閉集合。よってA1⊂A2⊂…⊂Ak⊂…AかつA=∪[k→∞]Akである。」 とあり、以降続きが画像の部分です。 ご教授頂けますと幸いです。 何卒宜しくお願い致しますm(_ _)m

  • 集合のφ

    高校で習う数学の範囲では、“適当な集合においては、常にφが含まれる”と簡単に考えて差し支えないでしょうか?例えば集合{a,b,c,d,e}というのは{a,b,c,d,e,φ}のことだとみなしても問題ないでしょうか? 部分集合を答えよ、という問題で{φ}というのが含まれていたので、え?って思ってしまって。

  • 剰余集合について

    R を実数体, t を 0 に等しくない実数とします。 このとき、多項式環 R[x, y] から3つのイデアル, A = (x^2, y^2), B = (x, y), C = (x + ty), を選びます。 剰余環 R[x, y]/A を考えるとき, A ⊆ B なので B/A は R[x, y]/A のイデアルになります。 それに対して, A ⊆ C は成り立たないため、これまで C/A というものを考えたことがありませんでした。 そこで質問なのですが, C/A を集合と見なすことは可能なのでしょうか。 無理矢理 C/A を集合と考えて調べてみると、次の 1 と 2 が成り立つことがわかりました。 1. C/A は R[x, y]/A のイデアルにならない 2. C/A は R[x, y]/A の部分集合にすらならない しかし、それだけではどうもすっきりしません。 今回の C/A のように, A ⊆ C が成り立たない場合でも, C/A を剰余集合と呼ぶのでしょうか。 f, g ∈ C に対して, f ~ g を f - g ∈ A と定義すれば、関係 ~ が同値関係になるのは理解できます。 しかし, 4Z/6Z などと同じく数学専門書で見た記憶がないため, C/A という表記そのものに対する違和感が消えません。 考えすぎなのかもしれませんが、どうしても気になるのでアドバイスをお願いできませんでしょうか。 集合論や抽象代数学の専門書で調べてみたのですが、疑問は解決しませんでした。

  • 右優集合

    微分方程式論 共立 現代数学講座11 の49ページを読んでいます。 微分方程式(2.5)に対して、n+1 次元の集合DおよびDに含まれる集合Eを考える。もし、Eの点から右(または左)へ出る(2.5)の解曲線がDに含まれる限り必ずそれがEに含まれるならば、Eは(2.5)に対してDにおいて右(または左)優集合であるという。 たとえば、(2.5)が dy/dx=0 A={(x、y)|x<=0、y=4} B={(x、y)|x=0、y=3} C={(x、y)|x>=0、y=2} F={(x、y)|x>=0、y=1} D=A∪B∪C∪F のときに、 Eはどんな集合になるのでしょうか? 最初は、 E=C∪F のように考えたのですが、 そのうちに、A、B、D、C の任意の和集合としてもよい。 と思えてきました。 どんな集合が、右優集合なのでしょうか? よろしくお願いします。

  • 今日の11時までにお願いします!!位相の問題です

    S={a,b,c,d,e}(五点集合)とし、Oを次の集合族とする。 {φ,{a},{b},{a,b},{a,b,c},{d,e},{a,d,e},{b,d,e},{a,b,d,e},S} とする。 (1)全ての閉集合を列挙せよ。 (2)A={a,c,d}のとき、Aの開核={a}及びAの閉包={a,c,d,e}を示せ。また、Aの各店が孤立点かどうか判定せよ。 (3)(2)のAの場合、導集合Aは閉集合かどうか調べよ。 この五点集合の取り扱い、考え方がさっぱりわかりません。また次の問題でも・・・ X={a,b,c,d,e,f,g,h}(八点集合)について、次のXの部分集合族B_iに属する集合を開集合として含む最小の開集合系でXに位相を入れよ。 (1)B_1={X} (2)B_2={{a},{b},{a,b,c},{c,g}} (3)B_3={{a,b,c},{c,f,h}} (4)B_4={{a,b,c},{d,e},{f,g,h}} (5)B_5={{a},{b},{c},{d},{e},{f},{g}} この位相を入れよと言う言い回しも理解しがたく、ましてや回答の考え方もわかりません。どうか丁寧にやさしく教えてください。お願いします。