• ベストアンサー
  • すぐに回答を!

帰納法、不等式の証明問題です

数学的帰納法がサッパリわかりません。 特に不等式の証明が、、、。 たとえばこんな問題です。 (1/1^2)+(1/3^2)+(1/5^2)+…+1/(2n-1)^2<(3/2)-1/4n が全ての自然数nで成り立つことを証明せよ。 この問題だと、どう解けばいいのでしょうか。 そして、不等式の成立の証明を数学的帰納法でする場合、「コレをしろ!」みたいなコツはあるのでしょうか。 かなり困ってます。 どなたかよろしくお願い申し上げます。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

こんばんわ。 基本的には、等式のときと同じです。 「n=1のときを示す。n=kのとき成立すると仮定して、n=k+1のときも成立することを示す。」 数学的帰納法で示す式は、 たいていの場合右辺か左辺が「数列の和」の形になっています。 そして、その和は単純に表すことができない形です。 和の形をなくすことを考えればよいことになります。 不等式の証明の場合は、不等式の左辺を L(n)、右辺を R(n)と書くと R(k+1)- L(k+1)> (n= kの不等式を用いて変形した式)> 0 という形で示すことが多いです。 最終的に示すべき n= k+1のときの不等式を書き下し、 ジグソーパズルのピースを合わせる感じで n= kのときの不等式を当てはめることを考えてみてください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学的帰納法 不等式の証明

    数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

  • 数学の帰納法の問題です

    数学の帰納法の問題です 自然数nに対して下の不等式を証明するという問題なのですが出だしからわかりません・・・ アプローチの仕方など教えてください! (1+2+3+…+n)(1+1/2+1/3+…1/n)≧n^2

  • 数学的帰納法の問題

    帰納法の問題を教えてください。 すべての自然数nについて、n^3+5nは6の倍数であることを数学的帰納法 によって証明せよ。 よろしくお願いします。

  • 数学的帰納法の証明2

    [問題] nは4以上の自然数とする。数学的帰納法によって、次の不等式を証明せよ。               2ⁿ>n²-n+2 この問題の証明の仕方がわかりません。 解法を回答してくださる方 お待ちしております。 ⁿはn乗 &#sup;は2乗のこと

  • 不等式の証明

    FKG不等式に関連する次の不等式の問題: 数列{a_n},{b_n}を単調増大列とするとき、 (a_1b_1+a_2b_2+…+a_nb_n)/n≧{(a_1+a_2+…+a_n)/n}{(b_1+b_2+…+b_n)/n} を示せ。 を解きたいのですが、Abel変形(積分の部分積分に相当するテクニック)を使えば簡単に証明できるのは知っています。で、この不等式、数学的帰納法では解けないのか?ということが少し気になりました。 n=1なら自明で、n=kで成立すれば、n=2kで正しい、ということは容易に分かります。したがってn=2^mタイプの自然数に対しての成立は簡単ですが、任意のnについて成り立つことを帰納法でうまく示すことは出来ますか?何かアイデアがあればぜひ教えてください。n=k(≧2)で成り立てば、n=k-1でも成り立つ、みたいなことが言えるとよいのですが。

  • 数学的帰納法の証明問題

    代数学の問題で数学的帰納法を使った証明問題で躓いてしまいました。 問題の最初でわからないため、その後の問題も同じく解くことができません。 どなたかアドバイスをしていただけないでしょうか。 問1:自然数mに対して 5^2^m≡1 (mod 2^(m+2) ), /≡1 (mod 2^(m+3) )   (後者 /≡は「合同ではない」ってことです) であることをmに関する数学的帰納法で示せ。 問2:1の結果を利用して 5^2^(n-2) ≡ 1 (mod 2^n) (n≧2), 5^2^(n-3) /≡1 (mod 2^n) (n≧3) であることを示せ 問3 5^2^(m-1) ≡ -1(mod 2) (m≧1), 5^2^(m-1) /≡-1(mod 2^n) (m≧1,n≧2) を示せ。 現在問1の解き方として m=1で成り立つことを証明する。 m=r とし 5^2^r≡1 (mod 2^(r+2) ), /≡1 (mod 2^(r+3) ) が成立すると仮定し、 両辺にある数を加えたりかけたりして m=r+1 つまり 5^2^(r+1)≡1 (mod 2^(r+3) ), /≡1 (mod 2^(r+4) )になることを証明できれば すべての自然数mに対して成立することが証明できると思います。 ただ、m=rからどうやればm=r+1につなげられるかわかりません。 どなたかご指導のほどよろしくお願いします。

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法の証明問題が分かりません

    nが自然数のとき、 1^2+2^2+…+n^2=1/6n(n+1)(2n+1) が成り立つことを数学的帰納法で証明せよ。

  • 数学的帰納法

    問 すべての自然数nについて、次の等式が成り立つことを数学的帰納法によって証明せよ。 1・2+2・3+3・4+……+n(n+1)=1/3n(n+1)(n+2) 〔1〕n=1のとき までは解るんですが 〔2〕n=kのとき 以降の解法が解りません。 教えていただけたら有難いです。