• ベストアンサー
  • すぐに回答を!

数学的帰納法 不等式の証明

数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

回答させていただきます。 この2(2k+1)とは、 2のk乗>2k+1 ・・・(2)を利用しています。 まず、n=k+1のときの両辺の差を考えることで、2のk+1乗が2(k+1)+1よりも大きいことを示します。 これを示すことによって、常に2のn乗>2n+1が成り立つことが証明されます。 そして、 2・2のk乗-(2k+3)は、 2のk乗>2k+1を利用するために、2のk+1乗-{2(k+1)+1}が変形されたものです。 2のk乗に変形することにより、そこに2k+1を代入します。 そして代入した結果が、2(2k+1)-(2k+3)です。 しかし、2のk乗>2k+1であるため 2・2のk乗-(2k+3)=2(2k+1)-(2k+3)のように、イコールでは繋げず、 2・2のk乗-(2k+3)>2(2k+1)-(2k+3)のように不等号になるのです。 そのあとは、2・2のk乗-(2k+3)>2(2k+1)-(2k+3)=2k-1となり、 k≧3であるため、2k-1>0であることが示され、 2のk+1乗が2(k+1)+1よりも大きいことが示されます。 あとは上記のとおりです。 要するに、2・2のk乗-(2k+3)から2(2k+1)-(2k+3)に変形するのは、 2のk+1乗が2(k+1)+1よりも大きいことを示すための計算を楽にするためです。 以上で回答を終わらせていただきます。 下に参考となるサイトを添付しておきます。 つたないのもので申し訳ありませんでした。

参考URL:
http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご丁寧にご回答ありがとうございます。 よく考えてみると単純なことでした・・・ 参考サイトまで載せていただき本当にありがとうございました

その他の回答 (2)

  • 回答No.2
  • asuncion
  • ベストアンサー率33% (1945/5846)

n=3のとき、2^n>2n+1は成り立つ。 n=k(ただしk≧3)のときに2^k>2k+1が成り立つとすると、 2^(k+1)-{2(k+1)+1} =2・2^k-(2k+3) ここで、仮定より、2^k>2k+1であるから、 2・2^k-(2k+3)>2・(2k+1)-(2k+3)=2k-1>0 よって、2^(k+1)>2(k+1)+1より、n=k+1の場合にも成り立つ。 ∴n≧3の場合、2^n>2n+1は成り立つ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 練習して自分のものにできるようがんばりたいと思います!

  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

2のk乗>2k+1 なのだから、 2・2のk乗-(2k+3) と、その中の「2のk乗」を「2k+1」に置き換えた2(2k+1)-(2k+3)を比較すると 2・2のk乗-(2k+3)>2(2k+1)-(2k+3) となるでしょ?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事遅れてしまい申し訳ありません。 考えればごく単純なことでした。 ありがとうございました!

関連するQ&A

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学的帰納法

    数学的帰納法がわからなくなってしまいました。 だれか、教えてください。 問題 次の等式が成り立つことを、数学的帰納法によって証明せよ。 nが自然数のとき、1・1 + 2・2 + 3・(2の2乗) +・・・・+ n・(2のn-1乗) = (n-1)・(2のn乗+1)----(1) (ⅰ)n=1のとき    (左)-(右)=1-1=0 よってn=1のとき(1)は成り立つ。 (ⅱ)n=kのとき(1)が成り立つと仮定すると、     1・1 + 2・2 + 3・(2の2乗) +・・・・+ k・(2のk-1乗) = (k-1)・(2のk乗+1)    n=k+1のとき、     (左)=1・1 + 2・2 + 3・(2の2乗) +・・・・+ k・(2のk乗)  ここからがわかりません。1・1 + 2・2 + 3・(2の2乗) を、どうやって処理したら良いんでしょう? やりかたはもうひとつあると思いますが、このやり方でお願いします。

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法の等式の証明

    数学的帰納法の等式の証明がわかりません。 良くわからないのでわかる方がいましたら説明をお願いします。 1二乗+2二乗+3二乗...n二乗=1/6n(n+1)(2n+1)・・・(1) n=1のとき(1)は 左辺=1、右辺1/6*1*2*3=1 よって(1)はn=1もとき成り立つ。 (1)がn=kのと成り立つと仮定すると、 1二乗+2二乗+3二乗+...k二乗=1/6k(k+1)(2k+1)と示せばよい。 n=k+1のとき 1二乗+2二乗+3二乗+...k二乗=1/6k(k+1)(k+2) 左辺=1二乗+2二乗+3二乗+...k二乗+(k+1)二乗 =1/6k(k+1)(k+2)+(k+1)二乗 =1/6(k+1)(k(2k+1)+6(k+1)) =1/6(k+1)(2k二乗+7k+6) =1/6(k+1)(k+2)(2k+3) =1/6(k+1)((K+1)+1)(2(k+1)+1) よってn=k+1のとき(1)は成り立つ。 全ての自然数nについて(1)は成り立つ。 という問題なんですが・・・。 1二乗+2二乗+3二乗+...k二乗+(k+1)二乗の (k+1)二乗はどこから出てきたんですか? どうしてもこれが何処から出てきたのかわかりません。 よろしくお願いします。

  • 数学的帰納法の証明2

    [問題] nは4以上の自然数とする。数学的帰納法によって、次の不等式を証明せよ。               2ⁿ>n²-n+2 この問題の証明の仕方がわかりません。 解法を回答してくださる方 お待ちしております。 ⁿはn乗 &#sup;は2乗のこと

  • 数学的帰納法

    nが自然数のとき、次の等式(*)を数学的帰納法を用いて証明せよ。 2+4+6+…+2n=n(n+1)・・・(*) 今日、数学的帰納法を勉強すていて自分で回答をつくったのですが、これでいいのか見てもらえませんか? 2+4+6+…+2n=n(n+1) (1)n=1のとき、左辺2、右辺2、よって成り立つ (2)n=kのとき 2+4+6+…2k=k(k+1)・・・1 が成り立つと仮定すると n=k+1 2+4+6+…2k+2(k+1)=(k+1)(k+2)・・・2 が成り立つことを証明する 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1)・・・3 2と3の右辺が一致するので、(*)は成り立つ (1)(2)より、すべてな自然数は成り立つ ・・・3のところを 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1) =(k+1)(k+2) =kの2乗+3k+2 よって成り立つ こうしてもよいのでしょうか 自分でつくったためあっているかわかりません 教えてください。

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数B 数学的帰納法 

    nは自然数とする。数学的帰納法を用いて、次の等式を証明せよ。 1+4+7+・・・・+(3n-2)=1/2n(3n-1)・・・・A という問題でn=kのときAが成り立つと仮定すると   1+4+7+・・・・+(3k-2)=1/2k(3k-1)である。この式に3(k+1)-2を加えると...とありますが、3(k+1)-2はどのようにして出すのかわからないので教えてください。宜しくお願いします。