• 締切済み
  • すぐに回答を!

数学的帰納法の証明問題

代数学の問題で数学的帰納法を使った証明問題で躓いてしまいました。 問題の最初でわからないため、その後の問題も同じく解くことができません。 どなたかアドバイスをしていただけないでしょうか。 問1:自然数mに対して 5^2^m≡1 (mod 2^(m+2) ), /≡1 (mod 2^(m+3) )   (後者 /≡は「合同ではない」ってことです) であることをmに関する数学的帰納法で示せ。 問2:1の結果を利用して 5^2^(n-2) ≡ 1 (mod 2^n) (n≧2), 5^2^(n-3) /≡1 (mod 2^n) (n≧3) であることを示せ 問3 5^2^(m-1) ≡ -1(mod 2) (m≧1), 5^2^(m-1) /≡-1(mod 2^n) (m≧1,n≧2) を示せ。 現在問1の解き方として m=1で成り立つことを証明する。 m=r とし 5^2^r≡1 (mod 2^(r+2) ), /≡1 (mod 2^(r+3) ) が成立すると仮定し、 両辺にある数を加えたりかけたりして m=r+1 つまり 5^2^(r+1)≡1 (mod 2^(r+3) ), /≡1 (mod 2^(r+4) )になることを証明できれば すべての自然数mに対して成立することが証明できると思います。 ただ、m=rからどうやればm=r+1につなげられるかわかりません。 どなたかご指導のほどよろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • koko_u_
  • ベストアンサー率18% (459/2509)

>どのように考えていけば 1 (mod 2^(r+3) )になるのでしょうか? (2X + 1)^2 = 4X^2 + 4X + 1 のように考える。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>m=rからどうやればm=r+1につなげられるかわかりません。 5^(2^(r+1)) = 5^(2^r * 2) = (5^(2^r))^2

共感・感謝の気持ちを伝えよう!

質問者からの補足

返答が遅れてしまい申し訳ありませんでした。 ご指摘の考え方で左辺は5^2^rをかけることで5^(2^(r+1)) になることはわかったのですが 右辺の場合、たとえば 1 (mod 2^(r+2) ) だと どのように考えていけば 1 (mod 2^(r+3) )になるのでしょうか?

関連するQ&A

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法の証明問題が分かりません

    nが自然数のとき、 1^2+2^2+…+n^2=1/6n(n+1)(2n+1) が成り立つことを数学的帰納法で証明せよ。

  • 数学的帰納法の問題

    帰納法の問題を教えてください。 すべての自然数nについて、n^3+5nは6の倍数であることを数学的帰納法 によって証明せよ。 よろしくお願いします。

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数学的帰納法 不等式の証明

    数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

  • 帰納法、不等式の証明問題です

    数学的帰納法がサッパリわかりません。 特に不等式の証明が、、、。 たとえばこんな問題です。 (1/1^2)+(1/3^2)+(1/5^2)+…+1/(2n-1)^2<(3/2)-1/4n が全ての自然数nで成り立つことを証明せよ。 この問題だと、どう解けばいいのでしょうか。 そして、不等式の成立の証明を数学的帰納法でする場合、「コレをしろ!」みたいなコツはあるのでしょうか。 かなり困ってます。 どなたかよろしくお願い申し上げます。

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • この数学的帰納法を用いた証明問題がわかりません。

    この数学的帰納法を用いた証明問題がわかりません。 (2)n 回微分可能な関数f(x) のn 次導関数をf^(n)(x) で表しf^(0)(x) = f(x) と定 義するとき,次の公式(P) が成立する.以下の問(a), (b) に答えなさい. (P)d^n/dx^n ( e^xf(x) ) =Σ(r=0からn)t(n r)e^xf^(r)(x) ( n ≧ 1, t(n r)=n!/( r!(n - r)! ) ) (a) g(x) = x^2e^x のn 次導関数g^(n)(x) を求めなさい. (b) 数学的帰納法を用いて公式(P) を証明しなさい.ただし,必要であれ ば次の性質を用いてよい. t(n ,r - 1)+t(n,r)=t(n + 1,r) (r ≧ 1; n ≧ r) -------------------------------------------------------------- 画像が見づらくて申し訳ありません。 (a)はh(x)=x^2と置くと、 g^(n)=d^n/dx^n( e^xh(x) )=Σ(rからn)e^x h^(r) (x) これで合っていますか? (b)は n=1のときは明らかに成り立つ。 n=k(kは自然数)のとき成り立つと仮定し、n=k+1のときの式変形がどうもうまくいきません。 (n≧3のときh^(n)=0であるのはわかります。) どなたか解説をよろしくお願いします。

  • 数学的帰納法

    問 すべての自然数nについて、次の等式が成り立つことを数学的帰納法によって証明せよ。 1・2+2・3+3・4+……+n(n+1)=1/3n(n+1)(n+2) 〔1〕n=1のとき までは解るんですが 〔2〕n=kのとき 以降の解法が解りません。 教えていただけたら有難いです。

  • 数学 数学的帰納法

    以下の問題がわかりません。 自然数nに対して、 A(n)=(cos2^n)(cos2^(n-1))・・・・(cos2)(cos1) A(n)=sin2^(n+1)/2^(n+1)sin1 ...(1) となることを証明せよ。 「数学的帰納法で示す n=1のとき(1)は成立する n=kのとき(1)が成立すると仮定する A(k)=sin2^(k+1)/2^(k+1)sin1」 ここまではわかります。 でも次に両辺にcos2^(k+1)をかけて cos2^(k+1)・A(n)=A(k+1) のようになりますが、ここがわかりません。 両辺にかけるのは、n=k+1のときの cos2^(k+1)・cos2^kだと思ったのですが違うのでしょうか。 それに、cos2^(k+1)・A(n)=A(k+1)も理解できません。 教えてください。 回答よろしくお願いします。