• ベストアンサー

積分計算

I=[0,1]とし、次の3つの曲線を考える。 C1:z(t)=t (t∈I) C2:z(t)=t^99 (t∈I) C3: z(t)=sin(πt/2) (t∈I) ∫[Ck] z dzを求めたいです。 答えは1/2になるのですが 方法を教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

∫[C1] z dz=∫[0,1] tdt=[t^2/2][0,1]=1/2 ∫[C2] z dz=∫[0,1] (t^99)*99(t^98)dt=99∫[0,1](t^197)dt =99[(t^198)/198][0,1]=99/198=1/2 ∫[C3] z dz=∫[0,1] sin(πt/2)*(π/2)cos(πt/2)dt =(π/4)∫[0,1]sin(πt)dt=(1/4)[-cos(πt)][0,1] =(1/4)(1+1) =1/2

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

∫[C1] z dz = ∫[C2] z dz = ∫[C3] z dz であることは、「置換積分」の名で知られています。 ∫[C1] z dz だけ計算すればよいです。 ∫[C1] z dz = ∫[0→1] t dt = [t^2/2]_(t=0→1) = 1/2 です。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素積分に関する質問です

    曲線C1,C2,C3で囲まれた領域で各∫1/(z-i)dzを計算しようとしています。 C1:z=√3exp(iπt) (0≦t≦1) C2:z=-√3+2√3t (0≦t≦1) C3:z=i+(1/2)exp(iπt) (0≦t≦2) で各曲線は表されています。この時の ∫c2(1/(z-i))dzの値がなぜ2/3(πi)になるのかがどうしても導けません。 どなたかご存知の方よろしくお願いいたします。

  • 積分計算

    C={z; |z|=2}とし、 ∫[C] sin z/(z-i) dzの求め方を教えてください。

  • 積分路

    教えてください! 曲線Cは点z=0を始点、z=2+(i/2)を終点とする任意の曲線である。次の積分の被積分関数はz平面の全域で不定積分をもつことを確かめ、次の積分を求めよ。 (1)∫c (6z+1)dz (2)∫c (eπz乗)dz (3)∫c (cosπz)dz

  • 複素積分2

    問題1 I=∫c 1/(z^2+1) dz 次の各曲線Cに沿って求める問題です。 (1)c:|z|=2 (2)c:|z-i|=1 問題2 I=∫c 1/z(2z+1) dz c:|z|=1 絶対値がついた問題はどうやって解けばいいのでしょうか?

  • 複素積分の問題です。

    教科書の問題からの抜粋ですが、答えが省略されていて分かりません。私のやり方と答えで良いのでしょうか?教えて下さい。 問、(2z+1)/(z^2-1)を次のかく点を中心とし、半径1の正方向の円に沿って積分せよ。 (1), z=1/3 (2), z=i 答え、  (1), z=1/3を中心として半径1の正方向の円にそっての積分範囲は、C={ z|-2/3≦z≦4/3 } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(2z+1)/(z+1)*1/(z-1)dz と書ける。 ここで(2z+1)/(z+1)は曲線Cの内部で正則なので、コーシーの積分公式より z=1 と置いて、 ∫c(2z+1)/(z+1)*1/(z-1)dz=2πi*(2*1+1)/1+1=3πi (2), z=iを中心として半径1の正方向の円に沿っての積分範囲は、C={ z|0≦z≦2i } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(1/z)*(2z^2+z)/(z^2-1)dz と書ける。 ここで(2z^2+z)/(z^2-1)は曲線Cの内部で正則なので、コーシーの積分公式より z=0 と置いて、 ∫c(1/z)*(2z^2+z)/(z^2-1)dz=2πi*0=0   特に(2)は自信がありません。以上お願いします。

  • 複素積分の初歩的な問題の解き方について

    教科書からの問題ですが答えが省略されているのでわかりません。 問、C={z||z|=1}とするとき、次の積分の値を求めよ。 (1), ∫[径路;C](z-2)dz (2), ∫[径路;C](z-2)|dz| の2問です。 答え、 題意|z|=1より Cは原点を中心とした半径1の円周上である。 (1), z=rexp^(iθ) とおき θをパラメータとする。 ∴dz=irexp^(iθ)*dθ ここで r=1 ∴∫[径路;C](z-2)dz=∫[θ;0→2π]{exp^(iθ)-2}iexp^(iθ)*dθ=i∫[θ;0→2π]exp^(i2θ)*dθ-2i∫[θ;0→2π]exp^(iθ)*dθ=0 (2), z=rexp^(iθ) ∴z=r(cosθ+isinθ) ここで r=1 ∴dz=(-sinθ+icosθ)dθ ∴|dz|=√{(-sinθ)^2+(cosθ)^2}dθ=dθ ∴∫[径路;C](z-2)|dz|=∫[θ;0→2π]{exp^(iθ)-2}dθ =∫[θ;0→2π]exp^(iθ)*dθ-∫[θ;0→2π]2*dθ=4π 以上私のやり方と答えでよいのでしょうか? それと、式中の絶対値符号の間隔をもっと狭く表示する方法が分かりません。なにか特別な方法があるのでしょうか?

  • 複素関数の積分

    (1)C:0から2+iに至る曲線 ∫[c](z^2-iz+2)dz (2)C:πから2πiに至る曲線 ∫[c]ze^(-z)dz この2問がどうしても解けないです 解説をお願いします

  • 留数の計算について

    ∫c zsin(iz)/(z-iπ)^3 dzを計算しろという問題なのですが。z=iπを代入するときにsin(iz)も0になるのでいiπは2位の極と先生がいってました。 これはどうしてなのでしょうか?sin(iz)/(z-iπ)がz=iπで1になるからですか? また実際に計算するとき答えは ∫c ze(iz)/(z-iπ)^3 dz=2πiR(πi)からその虚部をとって答えとする方法を使ったんですが。積分でやると0。微分でやると2πになりました。 本当の答えってなんになるでしょうか?

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

VC-1-DMXの複数台連結使用について
このQ&Aのポイント
  • VC-1-DMXを2台使用して、約1000chを制御する方法について教えてください。
  • VC-1-DMXは、DMX制御機能付きのLEDテープライトを制御するために使用され、多くのch数が必要です。
  • 2台のVC-1-DMXを接続して同時に使用することは可能でしょうか?
回答を見る