• 締切済み

複素積分の問題です。

複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

みんなの回答

回答No.1

C = {g(t)|a≦t≦b} int[C]f(z)dz = int[a,b]f(g(t))g’(t)dt を計算するだけです。 予想については、積分値 と r の関係を注目してみてください。

h1y0a0ku
質問者

お礼

何度もありがとうございます。 理解しやすかったです。

関連するQ&A

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • rを正の整数とし、複素平面上の曲線C:z(θ)= re^iθ (0?θ

    rを正の整数とし、複素平面上の曲線C:z(θ)= re^iθ (0?θ?2π)を考える。このとき複素積分 ∫_c cosz dz の値を求めよ。 まったくわからないので是非お願いします。

  • 複素関数の積分について教えてください。

    複素関数で、次のような問題がだされました。 Cをx=cosyに沿って1から-1+πiに至る曲線とするとき、次の積分を求めよ。 ∫c ze^zdz よくわかってないので、次のような回答になってしまいました。 根拠はありません。 f(z)=ze^zは前平面で正則なので、f(z)の原始関数F(z)の原始関数によって ∫c (ze^z)dz=[ze^z](←πiから1まで)-[e^z](←πiから1からまで) =πie^πi-e-(e^πi-e) 以上です。 どなたか、正しい答えを教えてください。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 複素積分

    複素積分の復習をしているのですが、参考書と違う答えが出てきてしまって、なぜその方法が間違っているのかわかりません。 Cを、|Z|=2を反時計回りに回る経路だとして、 ∫_C dz/(z(z-i))…(1) を計算するだけの問題で、答えは、コーシーの積分値の定理より4πiです。 自分は、最初、これを 1/(z(z-i))=i(1/z-1/(z-i)) と変換して、 (1)=i∫_C 1/z - 1/(z-i) dz…(2) ここで、z=0を時計回りに回る経路をC0,z=iを時計回りに回る経路をCiとおくと、 (2)=i(∫_C0 1/z - 1/(z-i) dz+∫_Ci 1/z - 1/(z-i) dz) =i(2πi - 2πi) =0 になってしまいます。この計算が明らかに間違っていることは、ほとんどの分数の複素積分が0になってしまうことからわかるのですが、どこが間違っているのでしょうか。 >管理人さんへ 課題を聞いている問題ではなく、復習中にどこが間違っているのかわからないので質問しているだけなので、削除しないでください。

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • この複素の問題の解き方を教えてください

    この問題の解き方と解答を教えてください 積分路Cを()内の曲線とするとき、複素積分を計算せよ ∫(z/z^2+z-2)dz、(C:|z|=3) よろしくお願いします

  • 複素積分の計算問題

    以下の問題のやり方を教えてほしいです。お願いします>< 積分路CをC=|z|=3の曲線とするとき、複素積分を計算せよ。 ∫c (z/(z^2+z-2))dz

  • 複素平面上の積分

    径路Cをz=εe^(iθ) [θ:π→0] とした時、径路積分 I=∫[C](1/z)dz は、以下の定理 αを含む閉曲線Kに対し ∫[K]((z-α)^n)dz は、 n=-1のとき2πi n≠-1のとき0 となる、という定理より、 I=-πi と、この本には載っているのですが、この径路Cは閉曲線でないためこの定理は使えないと思うのですが、何故このような解答になるのでしょうか?