• ベストアンサー

複素積分の問題

複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

f(z)=z^(-c)/(1+z) (0<c<1) 特異点は、分母=0 となる点であるから(1)はすぐに分かる。 0<c<1だからz = 0で分岐点を取る事になる。 (2)で半径rの積分路においてはr<1なので、図で与えられた積分路の内部に特異点z = -1を含む。 なので留数定理を使う事になる。 ∫γ{f(z)}dzは以下の積分に分割出来る。 I:実軸上でr→Rに向かう路 II:γRの路 (0<R<2π反時計回り) III:実軸上でR→rに向かう路 IV:γrの路 (0<r<2π時計回り) 積分路γ内部の特異点はz=-1のみで、分岐点z=0は周回していないので、積分の値は以下のようになる。 ∫γ{f(z)}dz = ∫[I]+∫[II]+∫[III]+∫[IV] =2πi・(留数) 実軸上z=rでargz=0にとれば、z=-1ではargz = π。 z = -1における留数Res{f(z)}|(z=-1) = lim(z→e^(πi)){(z+1)f(z)} = lim(z→e^(πi)){z^-c} = e^(-iπc) ∴∫γ{f(z)}dz = {∫[I]+∫[II]+∫[III]+∫[IV]}f(z)dz = 2πi・e^(-iπc) I: z = x dz = dx , argz = 0 , x = r→R III:z = xe^(2πi) dz = dx , argz = 2π , x = R→r よって ∫[I]+∫[III] = ∫[r,R]{x^(-c)/1+x}dx + e^(-i2πc)・∫[R,r]{x^(-c)/(1+xe^2πi)}e^(2πi)dx = (1-e^(-i2πc))∫[r,R]{x^(-c)/1+x}dx = -2ie^(-iπc)・sin(πc)∫[r,R]{x^(-c)/1+x}dx ∫[II]および∫[IV]は計算するとR→∞ , r→0でそれぞれ0に収束する。 従って R→∞ , r→0のとき ∫[r,R]{x^(-c)/(1+x)}dx = ∫[0,∞]{x^(-c)/(1+x)}dx = 2πi・e^(-iπc)/-2ie^(-iπc)・sin(πc) = π/sin(πc)

paipou
質問者

お礼

詳しい解説ありがとうございます お陰様で完全に理解できました! 本当にありがとうございます!

関連するQ&A

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分の問題です。

    複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

  • 全複素平面上で正則な関数f(z)は

    全複素平面上で正則な関数f(z)は lim_[r→0] ∫_Cr f(z) dz = 0 を満たすことを示せ。ただし、Cr = { r*exp(iθ) | 0≦θ≦π } (r>0の上半円周) 考えた証明の方針: 単純閉曲線C:= Cr + Cr' (ただし、Cr': = { x | -r≦θ≦r } )と定め、 まず、コーシーの積分公式を証明。すなわち、∫_C f(z) dz = 0 次に、∫_C f(z) dz = 0 に r→0として題意を示すと思いました。 しかし、∫_-r^r f(z)dz =0になることが言えなくて、つまづいています…。 どなたか知恵を貸してください。

  • 複素積分

    f(x)=1/(2+cos(x))の複素フーリエ係数c_nを求める過程で、 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x))を計算したいのですが途中で行き詰まってしまったので指南のほどをお願いします。 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x)) =∫_[0<x<2π]exp(-ni(x-π))/(2-cos(x))  積分範囲の変換 =2i∫_[周回積分]z^(-n)cos(nπ)dz/(z^2-4z+1)    z=exp(ix)と置いて置換 ここからnが奇数と偶数の場合に分けて計算しようと考えたのですが、どうしたらよいかわかりません。 よろしくお願いします。

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 積分の問題

    次の複素積分を求めたいです 1) ∫[C]z^n exp(-z) dz ただし、zは複素数で、nは整数。 積分路Cは原点を中心とする半径Rの円 2) ∫[C]z^n (1-z)^m dz ただし、zは複素数で、n,mは整数。 積分路Cは原点を中心とする半径R(>2)の円 この2問です。 よろしくお願いします。

  • 複素積分について

    複素積分についてなんですが… ∫cos(z/2)dz 積分経路Cがどんな曲線(anycurve)でもいいので0~π+2iです。 z=x+iy x=t,y=tと置いてやってるのですがうまくいきません。 わかる方教えてください!!

  • 複素積分の問題です。

    教科書の問題からの抜粋ですが、答えが省略されていて分かりません。私のやり方と答えで良いのでしょうか?教えて下さい。 問、(2z+1)/(z^2-1)を次のかく点を中心とし、半径1の正方向の円に沿って積分せよ。 (1), z=1/3 (2), z=i 答え、  (1), z=1/3を中心として半径1の正方向の円にそっての積分範囲は、C={ z|-2/3≦z≦4/3 } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(2z+1)/(z+1)*1/(z-1)dz と書ける。 ここで(2z+1)/(z+1)は曲線Cの内部で正則なので、コーシーの積分公式より z=1 と置いて、 ∫c(2z+1)/(z+1)*1/(z-1)dz=2πi*(2*1+1)/1+1=3πi (2), z=iを中心として半径1の正方向の円に沿っての積分範囲は、C={ z|0≦z≦2i } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(1/z)*(2z^2+z)/(z^2-1)dz と書ける。 ここで(2z^2+z)/(z^2-1)は曲線Cの内部で正則なので、コーシーの積分公式より z=0 と置いて、 ∫c(1/z)*(2z^2+z)/(z^2-1)dz=2πi*0=0   特に(2)は自信がありません。以上お願いします。

  • 複素積分

    In=1/2πi∫ c f(z)z^-n-1dz cは積分路でz=exp(iθ)で円周上を正の向きに回る。 f(z)=(2z^2+5z+2)/(2z^2-5z+2)です。 nは任意の整数としたとき複素積分Inはどうなるかわかりません。解き方のヒントを教えていただけたらありがたいです。よろしくお願いします。