• ベストアンサー

積分計算

C={z; |z|=2}とし、 ∫[C] sin z/(z-i) dzの求め方を教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

これは、留数定理でしょうね。 C が囲む領域 |z|<2 に、被積分関数 (sin z)/(z-i) の 特異点は z=i だけであり、 lim[z→i]{(z-i)^1}{(sin z)/(z-i)} = sin i ≠ 0 ですから、1 位の極です。 一位の極の留数は、Res[(sin z)/(z-i), z=i] = lim[z→i] (z-i)(sin z)/(z-i) = sin i と求められるので、 質問の積分は、留数定理より、∫[C]{ sin z/(z-i) }dz = (2πi) Res[(sin z)/(z-i), z=i] = (2πi)(sin i) = (2πi){e^(-1)-e^(1)}/(2i) = π(1-e^2)/e と求まります。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 積分計算

    I=[0,1]とし、次の3つの曲線を考える。 C1:z(t)=t (t∈I) C2:z(t)=t^99 (t∈I) C3: z(t)=sin(πt/2) (t∈I) ∫[Ck] z dzを求めたいです。 答えは1/2になるのですが 方法を教えてください。

  • 複素積分の問題について。

    複素積分の問題を解いてみたのですが、手元に答えがないうえに合っているか自信がないので、チェックしていただけると助かります。解法に誤りがあったらどうぞ指摘してください。自分の中では、留数の求め方が怪しいです。 以下、積分の経路Cは原点中心半径8の円で正の向きとします。 (1)∫ 1/sin(z) dz (2)∫ 1/(1-cos(z)) dz (3)∫ (1+z)/(1-e^z) dz (4)∫ tan(z) dz (1)∫ 1/sin(z) dz f(z)=1/sin(z) について、f(z) は z=mπ で特異点をとり、特にCの内部では z=0,±π,±2π が特異点となる。 ここで各点における留数を求めると、 Res(0)=1 Res(π)=-1 Res(-π)=-1 Res(2π)=1 Res(-2π)=1 となるので、 ∫ 1/sin(z) dz=2πi(1-1-1+1+1)=2πi (2)∫ 1/(1-cos(z)) dz f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、特にCの内部では z=0,±2π が特異点となる。ここで f(z) を z=0 のまわりで展開すると、 f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) =1/(1/2(z^2)-1/24(z^4)+・・・) であることから、Res(0)=0 同様に、Res(π)=0,Res(-π)=0 なので、 ∫1/(1-cos(z)) dz=2πi・0=0 (3)∫ (1+z)/(1-e^z) dz f(z)=(1+z)/(1-e^z) について、f(z) は z=2πim(mは整数)で特異点をとり、とくにCの内部では z=0,±2πi で特異点となる。ここで、 Res(0)=-1 Res(2πi)=-1-2πi Res(-2πi)=-1+2πi となるので、 ∫(1+z)/(1-e^z) dz=2πi(-1-1-2πi-1+2πi)=-6πi (4)∫ tan(z) dz f(z)=tan(z)=sin(z)/cos(z) について、f(z) は z=(2m+1)π/2 で特異点をとり、特にCの内部では z=±π/2、±3π/2,±5π/2 で特異点となる。ここで、 Res(±π/2)=-1 Res(±3π/2)=-1 Res(±5π/2)=-1 となるので、 ∫tan(z) dz=2πi・(-6)=-12πi

  • 複素積分の初歩的な問題の解き方について

    教科書からの問題ですが答えが省略されているのでわかりません。 問、C={z||z|=1}とするとき、次の積分の値を求めよ。 (1), ∫[径路;C](z-2)dz (2), ∫[径路;C](z-2)|dz| の2問です。 答え、 題意|z|=1より Cは原点を中心とした半径1の円周上である。 (1), z=rexp^(iθ) とおき θをパラメータとする。 ∴dz=irexp^(iθ)*dθ ここで r=1 ∴∫[径路;C](z-2)dz=∫[θ;0→2π]{exp^(iθ)-2}iexp^(iθ)*dθ=i∫[θ;0→2π]exp^(i2θ)*dθ-2i∫[θ;0→2π]exp^(iθ)*dθ=0 (2), z=rexp^(iθ) ∴z=r(cosθ+isinθ) ここで r=1 ∴dz=(-sinθ+icosθ)dθ ∴|dz|=√{(-sinθ)^2+(cosθ)^2}dθ=dθ ∴∫[径路;C](z-2)|dz|=∫[θ;0→2π]{exp^(iθ)-2}dθ =∫[θ;0→2π]exp^(iθ)*dθ-∫[θ;0→2π]2*dθ=4π 以上私のやり方と答えでよいのでしょうか? それと、式中の絶対値符号の間隔をもっと狭く表示する方法が分かりません。なにか特別な方法があるのでしょうか?

  • 留数の計算について

    ∫c zsin(iz)/(z-iπ)^3 dzを計算しろという問題なのですが。z=iπを代入するときにsin(iz)も0になるのでいiπは2位の極と先生がいってました。 これはどうしてなのでしょうか?sin(iz)/(z-iπ)がz=iπで1になるからですか? また実際に計算するとき答えは ∫c ze(iz)/(z-iπ)^3 dz=2πiR(πi)からその虚部をとって答えとする方法を使ったんですが。積分でやると0。微分でやると2πになりました。 本当の答えってなんになるでしょうか?

  • 複素積分2

    問題1 I=∫c 1/(z^2+1) dz 次の各曲線Cに沿って求める問題です。 (1)c:|z|=2 (2)c:|z-i|=1 問題2 I=∫c 1/z(2z+1) dz c:|z|=1 絶対値がついた問題はどうやって解けばいいのでしょうか?

  • 複素積分についての質問です

    複素平面において、点√3iを始点とし、点-√3iを終点とする線分をC1とし、 また、{Re(z)≦0,|z|=√3}を満たす半円をC2とした場合(向きは反時計回り)、 (1)∫_{C1}(1/(1+z))dz (2)∫_{C2}(1/(1+z))dz (3)∫_{C1}(zの共役複素数)dz (4)∫_{C2}(zの共役複素数)dz を求めよといった問題について、 (1)∫_{-√3i}^{√3i}(1/(1+z))dz =log(1-√3i)-log(1+√3i) =log((1-√3i)/(1+√3i)) =log((-1-√3i)/2) =log1+iarg(4pi/3)=iarg(4pi/3) (2)∫_{C2-C1}(1/(1+z))dzは留数定理より、 =2pi*Res(1/(1+z),-1)=i2piとなるから、 ∫_{C2}(1/(1+z))dz=i*2pi-iarg(4pi/3) (3)∫_C1(x-iy)d(x+iy) =∫_{0}^{0}xdx-i∫_{√3i}^{√3i}ydy =-i[y^2/2]_{-√3i}^{√3i}=0 (4)∫_{C2-C1}(zの共役複素数)dzはこの領域内に 特異点を含まないから積分値は0になる。 したがって∫_{C2}(zの共役複素数)dz=0 として、求めたのですが、これであってますでしょうか? 一番の疑問点は、(1)と(2)では、経路の違いにより、 積分値が異なっていますが、(3)と(4)では、同じになって しまっていることです。 ご回答よろしくお願い致します。

  • 複素積分

    複素積分の復習をしているのですが、参考書と違う答えが出てきてしまって、なぜその方法が間違っているのかわかりません。 Cを、|Z|=2を反時計回りに回る経路だとして、 ∫_C dz/(z(z-i))…(1) を計算するだけの問題で、答えは、コーシーの積分値の定理より4πiです。 自分は、最初、これを 1/(z(z-i))=i(1/z-1/(z-i)) と変換して、 (1)=i∫_C 1/z - 1/(z-i) dz…(2) ここで、z=0を時計回りに回る経路をC0,z=iを時計回りに回る経路をCiとおくと、 (2)=i(∫_C0 1/z - 1/(z-i) dz+∫_Ci 1/z - 1/(z-i) dz) =i(2πi - 2πi) =0 になってしまいます。この計算が明らかに間違っていることは、ほとんどの分数の複素積分が0になってしまうことからわかるのですが、どこが間違っているのでしょうか。 >管理人さんへ 課題を聞いている問題ではなく、復習中にどこが間違っているのかわからないので質問しているだけなので、削除しないでください。

  • 複素積分の問題が解けないです

    (1)C:|z|=3∫[c]z/(z^2+3iz-2)dz A:2πi (2)C:|z-i|=3 ∫[3]z^2/(z^2+z-2)dz A:2πi 解説をお願いします

  • 積分路

    教えてください! 曲線Cは点z=0を始点、z=2+(i/2)を終点とする任意の曲線である。次の積分の被積分関数はz平面の全域で不定積分をもつことを確かめ、次の積分を求めよ。 (1)∫c (6z+1)dz (2)∫c (eπz乗)dz (3)∫c (cosπz)dz

  • 複素積分の問題です。

    複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

このQ&Aのポイント
  • プロバイダ提供のアドレスで登録したマイクロソフトアカウントのメール送受信ができなくなった場合、どうすれば良いのか気になります。
  • プロバイダを変更し、新しいメールアドレスでマイクロソフトアカウントを再登録したいと考えていますが、認証ができずに困っています。
  • 新しいMSアカウントを作成することで問題を解決できるのか、ライセンスのリンク付けに影響はあるのか疑問です。
回答を見る