複素積分の問題の解法と留数の求め方

このQ&Aのポイント
  • 複素積分の問題を解く上での留数の求め方や特異点の扱いについて解説します。
  • 具体的な問題として、1/sin(z)、1/(1-cos(z))、(1+z)/(1-e^z)、tan(z) の複素積分を考えます。
  • それぞれの問題において特異点や留数を求め、積分の値を計算します。
回答を見る
  • ベストアンサー

複素積分の問題について。

複素積分の問題を解いてみたのですが、手元に答えがないうえに合っているか自信がないので、チェックしていただけると助かります。解法に誤りがあったらどうぞ指摘してください。自分の中では、留数の求め方が怪しいです。 以下、積分の経路Cは原点中心半径8の円で正の向きとします。 (1)∫ 1/sin(z) dz (2)∫ 1/(1-cos(z)) dz (3)∫ (1+z)/(1-e^z) dz (4)∫ tan(z) dz (1)∫ 1/sin(z) dz f(z)=1/sin(z) について、f(z) は z=mπ で特異点をとり、特にCの内部では z=0,±π,±2π が特異点となる。 ここで各点における留数を求めると、 Res(0)=1 Res(π)=-1 Res(-π)=-1 Res(2π)=1 Res(-2π)=1 となるので、 ∫ 1/sin(z) dz=2πi(1-1-1+1+1)=2πi (2)∫ 1/(1-cos(z)) dz f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、特にCの内部では z=0,±2π が特異点となる。ここで f(z) を z=0 のまわりで展開すると、 f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) =1/(1/2(z^2)-1/24(z^4)+・・・) であることから、Res(0)=0 同様に、Res(π)=0,Res(-π)=0 なので、 ∫1/(1-cos(z)) dz=2πi・0=0 (3)∫ (1+z)/(1-e^z) dz f(z)=(1+z)/(1-e^z) について、f(z) は z=2πim(mは整数)で特異点をとり、とくにCの内部では z=0,±2πi で特異点となる。ここで、 Res(0)=-1 Res(2πi)=-1-2πi Res(-2πi)=-1+2πi となるので、 ∫(1+z)/(1-e^z) dz=2πi(-1-1-2πi-1+2πi)=-6πi (4)∫ tan(z) dz f(z)=tan(z)=sin(z)/cos(z) について、f(z) は z=(2m+1)π/2 で特異点をとり、特にCの内部では z=±π/2、±3π/2,±5π/2 で特異点となる。ここで、 Res(±π/2)=-1 Res(±3π/2)=-1 Res(±5π/2)=-1 となるので、 ∫tan(z) dz=2πi・(-6)=-12πi

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

(1),(3),(4)は合ってます。 (2) >f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、 >特にCの内部では z=0,±2π が特異点となる。 ここまではOK >ここで f(z) を z=0 のまわりで展開すると、 >f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) >=1/(1/2(z^2)-1/24(z^4)+・・・) >であることから、Res(0)=0 これは駄目。 f(z)=2/z^2+1/6+z^2/120+z^4/3024+R_6 であることから、Res(0)=0 留数の値は同じですが…。 >同様に、 「同様に」と書いた場合、それ以前が間違っていた場合、間違いも「同様に」となりますのでご注意下さい。 f(z) を z=2π のまわりで展開すると、 f(z)=2/(z-2π)^2+1/6+(z-2π)^2/120+(z-2π)^4/3024+R_6 f(z) を z=-2π のまわりで展開すると、 f(z)=2/(z+2π)^2+1/6+(z+2π)^2/120+(z+2π)^4/3024+R_6 >Res(π)=0,Res(-π)=0 なので 間違い。 正:Res(2π)=0,Res(-2π)=0 なので 結果として留数自体は同じですので 積分結果は合ってます。

obento1214
質問者

お礼

ありがとうございます。(2)のローラン展開のしかたが理解できませんでしたが・・・ また別の機会に自学することにします。

関連するQ&A

  • 複素関数の積分

    答えられるのだけでいいのでどなたか是非お願いします;; (1)ローラン級数などの公式で次の特異点の留数を計算過程を示して求めよ。 (1)4/(1+z)^2 (2)sin 2z/z^6 (3)1/(1-e^z) (2)次の積分(留数積分)を反時計回りで計算せよ。 (4)∫c tan πz dz (C:|z| = 1) (5)∫c e^z/cos z dz ( C:|z| = 3) (6)∫c z+1/z^4-2z^3 dz (C:|z| = 1/2)

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • 複素積分の問題です。

    教科書の問題からの抜粋ですが、答えが省略されていて分かりません。私のやり方と答えで良いのでしょうか?教えて下さい。 問、(2z+1)/(z^2-1)を次のかく点を中心とし、半径1の正方向の円に沿って積分せよ。 (1), z=1/3 (2), z=i 答え、  (1), z=1/3を中心として半径1の正方向の円にそっての積分範囲は、C={ z|-2/3≦z≦4/3 } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(2z+1)/(z+1)*1/(z-1)dz と書ける。 ここで(2z+1)/(z+1)は曲線Cの内部で正則なので、コーシーの積分公式より z=1 と置いて、 ∫c(2z+1)/(z+1)*1/(z-1)dz=2πi*(2*1+1)/1+1=3πi (2), z=iを中心として半径1の正方向の円に沿っての積分範囲は、C={ z|0≦z≦2i } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(1/z)*(2z^2+z)/(z^2-1)dz と書ける。 ここで(2z^2+z)/(z^2-1)は曲線Cの内部で正則なので、コーシーの積分公式より z=0 と置いて、 ∫c(1/z)*(2z^2+z)/(z^2-1)dz=2πi*0=0   特に(2)は自信がありません。以上お願いします。

  • 複素積分についてです。

    ∫(z^3+5)dz /z{(z-1)^3} の閉曲線Cに沿った積分を求めるのですが、問題は(1)z=0を中心とした半径1/2の円周を反時計回りに一周した積分値。(2)z=0を中心とした半径2の円周を反時計回りに一周した積分値を求めよ。 なのですが、(1)では特異点1を、(2)では特異点0,1をC内部に含んでいて、積分値は0にならず一定の値をとることは分かるのですが、被積分関数がうまく部分分数分解できず、コーシーの積分公式も使えず、値が求められないのですがどうしたらいいのでしょうか・・・・。

  • 複素積分について

    ∫[0→2π]dθ/(a+bcosθ)の値を求めよという計算です。 z=exp(iθ)とおくと、、 またcosθ=(1/2)(z+1/z)となるので、 この積分は、 2/i∫1/(bz^2+2az+b)dz となり、bz^2+2az+b=0の根が特異点となるので、 その根をα、βとおくと、 2/i∫1/(z-α)(z-β)dzとなったのですが、 答えを見ると、 2/ib∫1/(z-α)(z-β)dz となっています。 分母にbがあるのですが、このbはどっからきたのでしょうか?

  • 複素積分の問題です。

    複素積分の問題なのですがインテグラル{cox(x)/x^2+1 }dx 範囲が -∞~∞ になっていて答えがπ/e になっています。留数定理をもちいて計算しようとおもったのですが x=zとおいて 孤立特異点がi,-iになり Res(f,i)をもとめていこうとしたのですが、ここからどうも答えに辿りつきません。 どなたかお手伝いよろしくお願いします。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分についての質問です

    複素平面において、点√3iを始点とし、点-√3iを終点とする線分をC1とし、 また、{Re(z)≦0,|z|=√3}を満たす半円をC2とした場合(向きは反時計回り)、 (1)∫_{C1}(1/(1+z))dz (2)∫_{C2}(1/(1+z))dz (3)∫_{C1}(zの共役複素数)dz (4)∫_{C2}(zの共役複素数)dz を求めよといった問題について、 (1)∫_{-√3i}^{√3i}(1/(1+z))dz =log(1-√3i)-log(1+√3i) =log((1-√3i)/(1+√3i)) =log((-1-√3i)/2) =log1+iarg(4pi/3)=iarg(4pi/3) (2)∫_{C2-C1}(1/(1+z))dzは留数定理より、 =2pi*Res(1/(1+z),-1)=i2piとなるから、 ∫_{C2}(1/(1+z))dz=i*2pi-iarg(4pi/3) (3)∫_C1(x-iy)d(x+iy) =∫_{0}^{0}xdx-i∫_{√3i}^{√3i}ydy =-i[y^2/2]_{-√3i}^{√3i}=0 (4)∫_{C2-C1}(zの共役複素数)dzはこの領域内に 特異点を含まないから積分値は0になる。 したがって∫_{C2}(zの共役複素数)dz=0 として、求めたのですが、これであってますでしょうか? 一番の疑問点は、(1)と(2)では、経路の違いにより、 積分値が異なっていますが、(3)と(4)では、同じになって しまっていることです。 ご回答よろしくお願い致します。

  • 複素関数の問題です。

    f(z) = cos(2z) - sin(z) Cを原点を中心とする半径1の半時計周りの演習とし、nを自然数とする。このときの積分値を求めよ。 ∫[C] f(z) / z^n dz +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ という問題です。 g(z) = f(z) / z^n としてz = 0が一位の極なので留数定理より Res = lim[z→0]{(z-0)g(z)} = lim[z→0]{f(z)/z^(n-1)} より Res = f(0) = 1 として極は半径1の円周のなかにz = 0のみなので ∫[C] f(z)/z^n dz = 2πi としました。 これで合っているのでしょうか? よろしくお願いします。