• ベストアンサー

複素積分に関する質問です

曲線C1,C2,C3で囲まれた領域で各∫1/(z-i)dzを計算しようとしています。 C1:z=√3exp(iπt) (0≦t≦1) C2:z=-√3+2√3t (0≦t≦1) C3:z=i+(1/2)exp(iπt) (0≦t≦2) で各曲線は表されています。この時の ∫c2(1/(z-i))dzの値がなぜ2/3(πi)になるのかがどうしても導けません。 どなたかご存知の方よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

>この時の >∫c2(1/(z-i))dzの値がなぜ2/3(πi)になるのかがどうしても導けません。 C2による積分は、z=x+iy(y=0,x=-√3→√3)より、実数軸上のxの積分範囲[-√3,√3]の積分に置き換えられることに注目すれば ∫c2(1/(z-i))dz=∫[-√3,√3](1/(x-i))dx =∫[-√3,√3]((x+i)/(x^2+1))dx =∫[-√3,√3](x/(x^2+1))dx+i∫[-√3,√3](1/(x^2+1))dx 第一項は奇関数の対称区間の積分なので=0、第二項は偶関数の対称区間の積分なので =2i∫[0,√3](1/(x^2+1))dx =2i[tan^-1(x)][0,√3] =2i[π/3 -0] =(2/3)πi

666bluebunny
質問者

お礼

丁寧で簡潔な式展開をありがとうございます。見ればなるほどという感じで、目からうろこです。この簡潔な形がなかなか導けないので、苦労をするのですが。 どうもありがとうございました。

その他の回答 (1)

回答No.2

ANo.1さんが∫_c2を実変数関数の積分に直して計算されているのでその回答で問題ないと思います. 複素積分でやるならつぎのようになります. ∫_c1dz/(z-i)=∫_Cdw/w C:-√3-i=2e^{-i5π/6}から√3-i=2e^{-iπ/6}への線分 ここで1/wはCを含む単連結領域において正則だから微分積分の基本公式が成り立ちます. ∫_Cdw/w=∫_{2e^{i(-5π/6)}}^{2e^{i(-π/6)}}dw/w=Log(2e^{i(-π/6)})-Log(2e^{i(-5π/6)})=i(-π/6)-{i(-5π/6)}=2πi/3 ※Log(*)は対数関数の主値です.

666bluebunny
質問者

お礼

更に丁寧な解説ありがとうございます。アホな話かもしれませんが、arctan(x)の値が与えられた時の数値というのは直感ですぐにわからないのが私の正直な数学力ですので、なじみのある対数の方がわかりやすいです。ありがとうございます。

関連するQ&A

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 複素積分について

    ∫[0→2π]dθ/(a+bcosθ)の値を求めよという計算です。 z=exp(iθ)とおくと、、 またcosθ=(1/2)(z+1/z)となるので、 この積分は、 2/i∫1/(bz^2+2az+b)dz となり、bz^2+2az+b=0の根が特異点となるので、 その根をα、βとおくと、 2/i∫1/(z-α)(z-β)dzとなったのですが、 答えを見ると、 2/ib∫1/(z-α)(z-β)dz となっています。 分母にbがあるのですが、このbはどっからきたのでしょうか?

  • 複素積分

    すみません、以前に同じ質問をさせてもらったんですが、 質問の仕方がまずかったみたいで、OKWaveサポートの方に削除されてしまいました。 回答してくれていた方、本当に申し訳ございません。 改めてわからない部分を書いておきます。 [問]区分的に滑らかな閉曲線Cが点aを通らなければ、     1/2πi∫_c dz/(z-a)   の値は整数となることを示せ。 ____________________________ どうも 2nπi が答えのようです。 C:z=z(t) (α≦t≦β) として、 h(t)=∫_α→t z'(t)/(z(t)-a)dt とおくと、h(t)は[α,β]で連続で、h'(t)=z'(t)/(z(t)-a)           ・           ・           ・           !? ってな感じです。 ↑コレを使うかどうかも微妙です。 読みずらい表記ですみませんが、アドバイスの方よろしくお願いします。

  • 複素積分について

    複素積分についてなんですが… ∫cos(z/2)dz 積分経路Cがどんな曲線(anycurve)でもいいので0~π+2iです。 z=x+iy x=t,y=tと置いてやってるのですがうまくいきません。 わかる方教えてください!!

  • 複素線積分についての質問です。

    複素線積分についての質問ですが、∮z二乗の dz、C;z=(1+i)t、tの範囲が0 から1で求めると値はどうなるでしょうか?答えと過程を教えてください。  

  • 複素積分の問題です。

    複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

  • 複素積分2

    問題1 I=∫c 1/(z^2+1) dz 次の各曲線Cに沿って求める問題です。 (1)c:|z|=2 (2)c:|z-i|=1 問題2 I=∫c 1/z(2z+1) dz c:|z|=1 絶対値がついた問題はどうやって解けばいいのでしょうか?

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分の初歩的な問題の解き方について

    教科書からの問題ですが答えが省略されているのでわかりません。 問、C={z||z|=1}とするとき、次の積分の値を求めよ。 (1), ∫[径路;C](z-2)dz (2), ∫[径路;C](z-2)|dz| の2問です。 答え、 題意|z|=1より Cは原点を中心とした半径1の円周上である。 (1), z=rexp^(iθ) とおき θをパラメータとする。 ∴dz=irexp^(iθ)*dθ ここで r=1 ∴∫[径路;C](z-2)dz=∫[θ;0→2π]{exp^(iθ)-2}iexp^(iθ)*dθ=i∫[θ;0→2π]exp^(i2θ)*dθ-2i∫[θ;0→2π]exp^(iθ)*dθ=0 (2), z=rexp^(iθ) ∴z=r(cosθ+isinθ) ここで r=1 ∴dz=(-sinθ+icosθ)dθ ∴|dz|=√{(-sinθ)^2+(cosθ)^2}dθ=dθ ∴∫[径路;C](z-2)|dz|=∫[θ;0→2π]{exp^(iθ)-2}dθ =∫[θ;0→2π]exp^(iθ)*dθ-∫[θ;0→2π]2*dθ=4π 以上私のやり方と答えでよいのでしょうか? それと、式中の絶対値符号の間隔をもっと狭く表示する方法が分かりません。なにか特別な方法があるのでしょうか?