• ベストアンサー

量子力学の問題の解説で質問があります

(問題) 水素原子のs状態の固有関数φは動径関数rだけの関数で、φ=u(r)/r とおけば {[-(hbar)^2/2m}(d/dr)^2-(1/4πεo)e^2/r)u = εu が成り立つ。(e:電荷) 束縛状態に対応する固有関数はさらに ∫(全空間)|φ|^2 dv ∝ ∫(0→∞) |u(r)|^2 dr =有界 を満たしていることが必要である。副条件として、もしこれだけを課した場合には、s状態のエネルギー固有値はどうなるか。 この解説の右のページの鉛筆で四角で囲っている部分がどうしても分かりません。 なぜエネルギー固有値は、この副条件だけだと連続的になってしまうのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

p.76の一番上の式を満足するrよりも内側がなくなるからじゃないかな?

godfather0801
質問者

お礼

ありがとうございます。 ようやく解決しました。

その他の回答 (1)

回答No.1

εが-∞の場合どうなるか考えてみて。

godfather0801
質問者

補足

返答ありがとうございます。 εが-∞のときは、粒子が存在しないということでしょうか? そもそもエネルギーが負になるということ自体が一体どういうことなのかがあまりピンときません。

関連するQ&A

  • 量子力学の微分方程式の解

    量子力学の微分方程式の解 動径方向の微分方程式は(1)のようにかける。 固有関数は(2)のようにかけるとき、 パラメータaとエネルギー固有値Eを求めよ。 この問題↑を解いたのですが、 答えは(3)のようになりました。 これであっているでしょうか? また、エネルギー固有値をどう求めればよいか分かりません。 どなたか教えていただけるとうれしいです。

  • 量子力学の以下の問題の解説について

    http://okwave.jp/qa/q8011047.html  の続きの部分で質問があります。(前のページに行かなくても問題を把握できるようにしています) 問題3.1 ポテンシャルV(x)はx < 0 のとき+∞ 0 < x < a のとき -Vo (Vo>0) x > a のとき 0 に対する1次元束縛運動のエネルギー固有値はどのようにして求められるか。また束縛状態(ε<0)が存在しうるためには a^2Vo≧(hbar)^2π^2/8m でなければならないことを示せ。 ここで質問なのですが、左のページ一番下の数式 cot(ka)=-κ/k からエネルギー固有値を出すということで、この方程式一つを解いてεを出すことはできないのでしょうか?(私には無理でしたが・・・・) ちなみに、交点を求めて出すというやり方でも κ^2/cos^2(ka) = 2mVo/(hbar)^2 までは変形したのですが、そこからεをだすことができません。 どなたかご教授ください。

  • 量子力学について

    k/r (kは定数 r=(x^2+y^2+z^2)^1/2) のポテンシャルエネルギーをもつ保存系の場合に、定常状態のシュレディンガー方程式を具体的に書き下すと        (-(h/2π)^2/2mΔ+k/r )Ψ=EΨ (Eは固有値 Ψは波動関数 ) これであっているでしょうか? 回答よろしくお願いします。

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 量子力学の以下の問題の解説が理解できずに困ってます

    問題3.1 ポテンシャルV(x)はx < 0 のとき+∞ 0 < x < a のとき -Vo (Vo>0) x > a のとき 0 に対する1次元束縛運動のエネルギー固有値はどのようにして求められるか。また束縛状態(ε<0)が存在しうるためには a^2Vo≧(hbar)^2π^2/8m でなければならないことを示せ。 解説の画像は以下のURLに載せました。 ここで質問なのですが、 φ外'(a)/φ外(a) < 0 とありますが、なぜわざわざこれを考えなければならないのでしょうか? いきなりこの式がポンとでてきたので困ってます。

  • 量子力学(変分法)

    いつもお世話になっております。 2次元または3次元上で、原点に固定された電荷e(>0)の点電荷に束縛されている電子の基底状態を変分法で調べようという問題です。点電荷から電子までの距離をrとし、ハミルトニアンを      H = - h^2/2m ∇^2 - e^2/( 4πε_0 r ) ;見にくくてすみません とします。hはプランク定数を2πで割ったもの(エイチバー)とします。試行(変分波動)関数として      Ψ(r) = N exp (-αr) を採用するものとし、αを変分パラメータ、Nを規格化定数とします。 ●3次元の場合は、計算が間違えているかもしれませんがエネルギー期待値はh^2/2m となりました。 ●2次元の場合。  Hの期待値を計算したところ(2\pi * \int_{0}^{\infty} Ψ^{*}HΨ r dr ) <H> = 2\pi N^2 (h^2/8m - e^2/ (8\piε_0 \alpha) ) となって、これをαで偏微分しても<H>を最小にするような\alpha は出てこない気がするのですが・・・・どうすればいいのでしょうか?なお、      ∇^2 f(r) = f ' '(r) + 2/r * f ' (r) であることを利用しました。

  • 量子力学 縮退

    シュレディンガー方程式を具体的に解くことができ,波動関数が求まっているときに縮退のあるなしは以下のような考えで判断できますか? 具体的にもとまったエネルギー固有値に対して,エネルギー固有状態が1つ定まるため縮退はない たとえば エネルギー固有値En に対して エネルギー固有状態が sin(C En x) だった場合,関数の形から縮退なし のように考えるということです. わかりにくくてすみません. また上の考え方が正しいとき縮退があるような形のエネルギー固有関数の形はどのようなものですか?

  • 水素原子の波動関数の動径部分

    これは<量子力学演習>(しょうか房、小出昭一郎著)のP62の<3.22>に載っている問題です。 s状態(l=0)水素原子の波動関数をΨn=Rn(r)=Un(r)/rとし、Unに対するシュレーディンガー方程式を求めると、 {-(h^2/2m)d^2/dr^2-e^2/4πεr}Un=EnUnとなります。 ここで波動関数の有界性より、∫|Ψn|^2dv ∝ ∫|Un|^2dr = 有界とならねばなりません。そこまではわかるんですが、そのあとに Enが飛び飛びの値をとるためにはなぜかr=0近傍でU(0)=0とならねばならないと書いてあるんですがこれは何処から出てきたんでしょうか?

  • 電磁気学の問題のやり直し

    問題をやり直したのでもう一度チェックをお願いしたいのと その続きの問題についてのチェックもお願いします 問題  半径がr1,r2の(r1<r2)の厚さの無視できる導体球殻1,2が同心状に設置されている。はじめ球殻1,2にはそれぞれQ1、Q2、の電荷が与えられている。ただし無限遠方の電位は接地電位と同じく0である。球殻の中心をOとし任意の点PのOからの距離をrとする。真空の誘電率はε0とする (1)点Pでの電場の強さをrの関数として求めよ ⅰ)0≦r<r1のとき Eⅰ=0 ⅱ)r1<r<r2のとき Eⅱ=Q/4πε0r^2 ⅲ)r2<rのとき Eⅲ=(Q1+Q2)/4πε0r^2 (2)点Pでの電位をrの関数として求めなさい ⅰ)0≦r<r1のとき Vⅰ=1/(4πε0)((Q1/r1)+(-Q1/r2)+((Q1+Q2)/r2)) =1/(4πε0)((Q1/r1)+(Q1/r2)) ⅱ)r1<r<r2のとき Vⅱ=1/(4πε0)((Q1/r)+(-Q1/r2)+(Q1+Q2/r2)) =1/(4πε0)((Q1/r)+(Q2/r2)) ⅲ)r2<rのとき Vⅲ=1/(4πε0)((Q1+Q2)/r) (3)初めの状態で系に蓄えられている電場エネルギーをを求めなさい 球殻1 U1=(1/2)Q1V1=Q1/(8πε0)((Q1/r1)+(Q1/r2)) =1/(8πε0)((Q1^2/r1)+(Q1Q2/r2)) 球殻2 U2=(1/2)Q2V2=Q2/(8πε0)((Q1+Q2)/r2) =1/(8πε0)((Q1Q2+Q2^2)/r2) したがって 球殻1+球殻2 =1/(8πε0)((Q1^2/r1)+(2Q1Q2+Q2^2)/r2) 4,次に球殻1に接地する。接地した後の球殻1の電荷を求めなさい 接地すると球殻1の電位は0となるのまではわかるのですがそのあとのヒントをください 5、4で接地することにより系の電場のエネルギーは変化する。この際系に蓄えられた電場のエネルギーは接地によって増加することはないことを示せ 4を解いてないので考え方だけですが4で求めた電荷とV2で接地のときのエネルギーを出して3で求めたエネルギーと比べればよいのでしょうか?