• 締切済み

三角関数の積分計算

つまりましたのでご助言いただけると幸いです。 ∫[0→2pi]dθ 1/(1-acosθ) =∫[0→pi]dθ 1/(1-acosθ) +∫[0→pi]dθ 1/(1+acosθ) =2∫[0→pi]dθ 1/(1-a^2cos^2θ) =2∫[0→∞]dt 1/(a^2-t^2-1)

みんなの回答

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

aについて条件は何もないでしょうか? 何もないのなら場合分けが必要でしょう! a=0の場合  被積分関数=1で積分=2π 0<a<1の場合  積分可能 a=1の場合  cosθ=1で被積分関数=∞  積分不可(∞) a=-1の場合  cosθ=-1で被積分関数=∞  積分不可(∞) a>1の場合  cosθ=1/aで被積分関数=±∞  積分不可 a<-1の場合  cosθ=-1/aで被積分関数=±∞  積分不可 -1<a<0の場合  積分可能 おやりの積分計算は 0<a<1の場合を想定して見えるようですが…。 そうであれば >∫[0→2pi]dθ 1/(1-acosθ) >=∫[0→pi]dθ 1/(1-acosθ) +∫[0→pi]dθ 1/(1+acosθ) =2∫[0→pi]dθ 1/(1+acosθ) となりますので わざわざ >=2∫[0→pi]dθ 1/(1-a^2cos^2θ) >=2∫[0→∞]dt 1/(a^2-t^2-1) と複雑化する意味はないでしょう?

samidare01
質問者

補足

ありがとうございます! a>0を想定しています。 >0<a<1の場合を想定して見えるようですが…。 >そうであれば >>∫[0→2pi]dθ 1/(1-acosθ) >>=∫[0→pi]dθ 1/(1-acosθ) +∫[0→pi]dθ 1/(1+acosθ) >=2∫[0→pi]dθ 1/(1+acosθ) >となりますので >わざわざ >>=2∫[0→pi]dθ 1/(1-a^2cos^2θ) >>=2∫[0→∞]dt 1/(a^2-t^2-1) >と複雑化する意味はないでしょう? おっしゃる通りでしたm(-_-)m >a>1の場合 > cosθ=1/aで被積分関数=±∞ > 積分不可 うーんそうなんですが、これが主値積分の場合は収束しそうですよね??

全文を見る
すると、全ての回答が全文表示されます。
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

ぶぶんぶんすうにぶんかいしてみてはどうだろうか.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 三角関数を時間微分すると・・・

    まず、(a,bは定数)x=acosθ+bcosψを時間(t)で微分します。 するとdx/dt=-a(dθ/dt)sinθ-b(dψ/dt)sinψ-(1)と なるのはなんとなく分かるのですが。 (1)式をさらに時間(t)で微分すると、 (d^2x/dt^2)=-a(d^2θ/dt^2)cosθ-b(d^2ψ/dt^2)sinψ-b(dψ/dt)^2cosψ-(2)になるのがまったく分かりません。 どうして(1)式をさらに時間微分するとψの項が2つ出現するのか がまず?です。 何度も先生に聞いたりしましたが、よく分かりませんでした。 どなたか、解き方を教えて下さい。 よろしくお願いします。

  • 積分について

    dx/dt=3acos^2t(-sint) dy/dt=3asin^2tcostのとき、 (dx/dt)^2+(dy/dt)^2 =9a^2cos^2t+sin^2t この計算過程を教えてください。

  • 三角関数の積分計算ですが…

    ∫sin^2(x)dx の積分計算をしたいのですが、半角(2倍角)の公式を使わずに、という制限つきでした。 t=tan(x) とおいて、sin^2(x)=t^2/(1+t^2) dx=dt/(1+t^2) という形にして解こうと思ったのですが、∫(t^2/(1+t^2)^2)dt となってっしまい解けませんでした。他にも sin^2(x)を(√1-cos^2(x))*sin(x) として、cos(x)で置換積分を試みましたが、 √(1-t^2)がでてくるため無理でした。どうすればうまくいきますか? ちなみに必要かどうかはわかりませんが、積分区間は 0→2π でした。

  • 積分の計算

    ∫1/√(x^2+1)dxをもとめよ。 x=tanθとおくと、dx=dθ/cos^2θ 与式=∫(dθ/cosθ)=∫cosθ/(1-sin^2θ)dθ sinθ=tとおくと、cosθdθ=dtより、 与式=∫dt/(1-t^2) =1/2((1/1-t)+(1/1+t))dt =1/2(-logI1-tI+logI1+tI)+C(絶対値) =1/2log{(1+t)/(1-t)}+C =1/2log{(1+sinθ)/(1-sinθ)}+C =1/2log{(1+sinθ)^2/cos^2θ}+C =log(1+sinθ/cosθ)+C とやって、tanθ=xを使って復元できなくなりました。 助けてください

  • 積分(三角関数)の絶対値の外し方について

    ∫[0,(n+1/2)π]t|cos(t)|dt=∫[0,1/2π]t|cos(t)|dt+Σ[k=1,n]∫[(k-1/2)π、(k+1/2)π]t|cos(t)|dt というような式変換がありました。(k,nはともに自然数) どのような式変換でこのような形になったのかがわかりません。 何をしたのでしょうか?

  • 複素関数の積分

    ζ(t)を実数変数tの複素関数とする。 ∫[a→b] ζ(t)dtは複素数となるので、 ∫[a→b] ζ(t)dt = | ∫[a→b] ζ(t)dt |*e^(iθ)と変形することができる。 この式の両辺にe^(-iθ)を掛けて、ζ(t)=|ζ(t)|*e^(iφ)とおくと、 右辺=| ∫[a→b] ζ(t)dt |, 左辺=e^(-iθ) ∫[a→b] ζ(t)dt=∫[a→b] e^{i(φ-θ)} |ζ(t)| dtとなる。 右辺| ∫[a→b] ζ(t)dt |については、複素数∫[a→b] ζ(t)dt の絶対値をとっているので実数になる。 この左辺のe^{i(φ-θ)} についてオイラーの公式より、e^{i(φ-θ)} =cos(φ-θ)+isin(φ-θ)となるが、右辺| ∫[a→b] ζ(t)dt |が実数となるので、isin(φ-θ)の項は消える。 したがって、| ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dtとなり、cos(φ-θ)≦1であることから、 | ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dt≦∫[a→b] |ζ(t)| dt、| ∫[a→b] ζ(t)dt |≦∫[a→b] |ζ(t)| dtが導ける。 ※質問です。『この左辺のe^{i(φ-θ)} についてオイラーの公式より、e^{i(φ-θ)} =cos(φ-θ)+isin(φ-θ)となるが、右辺が実数となるので、isin(φ-θ)の項は消える。』というところで、isin(φ-θ)が消えるということは、sin(φ-θ)=0になると思うのですが、この考え方は正しいのでしょうか? そうなると(φ-θ)は..,-π,0,π,2π..に限定され、cos(φ-θ)の値も同様にcos(2nπ)=1、あるいはcos(2n-1)π= -1 [n=整数]の2つに絞られるはずです。そして、| ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dtの式は、 | ∫[a→b] ζ(t)dt |=∫[a→b] |ζ(t)| dt [(φ-θ)=2nπ] | ∫[a→b] ζ(t)dt |= (-1)* ∫[a→b] |ζ(t)| dt [(φ-θ)=(2n-1)π] の2組以外には考えられないはずですので、なぜcos(φ-θ)≦1であることを持ち出し、 | ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dt≦∫[a→b] |ζ(t)| dtと変形しているのかが分かりません。 詳しい方教えてください。 お願いします。

  • 三角関数の定積分の問題教えて下さい。

     答えがない問題なので教えて下さい。 F(a)=インテグラ[0→π/2]|sin x - acos x | dx を最小にするaの値を求めよ。 もう10年以上前のことなのでやり方を忘れました。 自分で考えた解き方は絶対値の中を ≧0と <0で場合分けして sin x - acos x ≧0の時 F(a)=インテグラ[0→π/2](sin x-acos x)dx =[-cos x - asin x] 0→π/2    = -cos (π/2) - asin (π/2) - (-cos 0 - asin 0 ) こんな感じで解いていけばいいのでしょうか? わかる方教えて下さい。よろしくお願いします。 なおパソコンでの書き方がよくわからず、すみません。  

  • 三角関数の微分について

    よろしくお願いします。 問題【asin^4t, y=b*(1-cost)のとき、dy/dx, d^2y/dx^2 を求めよ。】 まず、a と b を、t で微分しました。 そこから、dy/dx = -(b*cos^2t)/(a*sin^2t) を導きました。 これが合っているかを、教えてください。 次に、d^2y/dx^2 を、(d/dt)*(dy/dx)*(dt/dx)と考えて解こうとしました。 ところが、{(a*sin^4t + b*cos^4t)/(a^2*sin^4t)}*1/4a*sin^3*cost という、奇妙な結果になってしまいました。 これは間違いだと思います。 ですので、解答と解説をお願いしたいと思います。 以上、よろしくお願いします。

  • 初歩の三角関数積分について

    高校数学をやり直している者です。 y=sin^2(x)の積分は、倍角の公式を用いて、 sin^2(x)=(1-cos(2x))/2として進めるのが定番となっていますが、 y=t^2, t=sin(x)とした置換積分の手法では、正答と結果が違います。 y=t^2, t=sin(x) Y=∫t^2 dx, dx=(1/cos(x))dt Y=(1/cos(x))∫t^2 dt Y=(1/cos(x))*(t^3/3) Y=(1/cos(x))*(sin^3(x)/3) この置換積分のどこがいけないのでしょうか?

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。

このQ&Aのポイント
  • エッジ起動時にFMVマイページ・サーチが自動的に表示される問題が発生しています。
  • エッジの設定ページで表示をオフにしても解決せず、困っています。
  • この問題を解決する方法を教えてください。
回答を見る