• 締切済み

絶対値付き三角関数の積分、ラプラス変換の問題

積分∫| cos(t) |e^-st dt を求めよ.という問題で 自分なりに計算してみたところ、 ∫| cos(t) |e^-st dt   (範囲は0~π) = ∫cos(t)e^-st dt - ∫cos(t)e^-st dt  (範囲は0~π/2、π/2~π) = [e^-st × (-scos(t) + sin(t) ) / s^2 + 1 ] - [e^-st × (-scos(t) + sin(t) ) / s^2 + 1] (範囲は0~π/2、π/2~π) = (2e^-πs/2 / s^2 + 1 ) - ( s / s^2 + 1 ) - (se^-πs / s^2 + 1) となりました。 その次の問題で、 |cos(t)| = |cos(t+π)|を用いて、ラプラス変換 L[ |cos(t)| ] = ∫|cos(t)|e^-st dt (範囲は0~∞)を計算せよ という問題があり、こちらの方は手も足も出ない状態です。。。 まず、前半の計算の仕方が合っているのかとその次の問題の解法をお伺いしたいです。 大変見にくいとは思いますが、どうかよろしくお願いします。

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

-(s/s^2+1)ではなく+{s/(s^2+1)}です f(t)=cos(t)e^{-st} F(t)=∫f(t)dt とすると F(t)=e^{-st}×[-scos(t)+sin(t)]/(s^2+1) ∫_{0~π/2}f(t)dt=F(π/2)-F(0) ∫_{π/2~π}f(t)dt=F(π)-F(π/2) F(π/2)=e^{-sπ/2}/(s^2+1) F(0)= -s/(s^2+1) F(π)=se^{-sπ}/(s^2+1) ∫_{0~π}|cos(t)|e^{-st}dt =∫_{0~π/2}f(t)dt-∫_{π/2~π}f(t)dt =F(π/2)-F(0)-{F(π)-F(π/2)} =2F(π/2)-F(0)+F(π) = [2e^{-sπ/2}/(1+s^2)]+{s/(1+s^2)}-[se^{-sπ}/(1+s^2)] = [2e^{-sπ/2}+s-se^{-sπ}]/(1+s^2) F_n=∫_{(n-1)π~nπ}|cos(t)|e^{-st}dt P(n)=[F_n=e^{-s(n-1)π}F_1] とすると P(1)=[F_n=e^{-s(1-1)π}F_1]は真 ある自然数nに対してP(n)が真と仮定すると F_n=e^{-s(n-1)π}F_1 F_{n+1} =∫_{nπ~(n+1)π}|cos(t)|e^{-st}dt =∫_{(n-1)π~nπ}|cos(x+π)|e^{-s(x+π)}dx =e^{-sπ}∫_{(n-1)π~nπ}|cos(x)|e^{-sx}dx =e^{-sπ}F_n =e^{-snπ}F_1 ↓ P(n+1)=[F_{n+1}=e^{-snπ}F_1]は真 ↓ すべての自然数nに対して F_n=e^{-s(n-1)π}F_1 F_1=[2e^{-sπ/2}+s-se^{-sπ}]/(1+s^2) だから ∫_{0~∞}|cos(t)|e^{-st}dt =Σ_{n=1~∞}F_n =Σ_{n=1~∞}e^{-s(n-1)π}F_1 =F_1/(1-e^{-sπ}) =[2e^{-sπ/2}+s-se^{-sπ}]/{(1+s^2)(1-e^{-sπ})}

関連するQ&A

  • ラプラス変換を求めたい

    次の二つのラプラス変換を求めたいのですが (1)  (t^2)(e^3t)sin2t (2)  (t^2)(e^2t)+∫(τ^2)cos3(t-τ)dτ (積分範囲は0~τ) (1)は L[f*g]=L[f][g] を使い L[t^2]L[(e^3t)sin2t]にして、ラプラスの変換の公式? L[t^n]=n!/s^n+1 L[(e^at)sinωt]=ω/(s-a)^2+ω^2 を使い解いたのですが答えが合いませんでした。 (2)は 前部分(t^2)(e^2t)は 2/(s-3)^3で合っているのですが、後ろ部分のラプラス変換がよく分かりませんでした。 ちなみに答えは (1) 4{3(s-3)^2-4}/{(s-3)^2+4}^3 (2) 2/(s-2)^3 + (2/s^3)(s/s^2+9) となるはずなのですが… どなたか解説・アドバイス、よろしくお願いします。

  • ブロムウィッチ積分による逆ラプラス変換

    F(s)=1/(√s+c) の逆ラプラス変換をブロムウィッチ積分 f(t)=L^(-1)F(s)={1/(2πi)}∫[c-ip→c+ip]F(s)e^(st)ds (t>0) を用いて解く問題が分かりません。分岐点がどこかから躓いてます。 √s=-cなので、√s=√x(cosθ+i・sinθ)よりθ=-π,x=c^2とすればよいでしょうか。 その場合、積分路の取り方と、計算方法をご教示頂けると助かります。

  • 畳み込み積分のラプラス変換

    畳み込み積分      f * g = ∫[0,t] f(τ) g(t-τ) dτ のラプラス変換が式      L[f * g] = L[f(t)]L[g(t)] の性質を満たすことを示そう。 L[f * g] = ∫[0,∞] (f * g) e^(-st) dt      = ∫[0,∞] {∫[0,t] f(τ) g(t-τ) dτ} e^(-st) dt     ←ここから      = ∫[0,∞] f(τ) {∫[τ,∞] g(t-τ) e^(-st) dt } dτ      = ∫[0,∞] f(τ) {∫[0,∞] g(u) e^{-s(u+τ)} du } dτ   ←ここまで      : (これ以降は理解できました)      = L[f(t)]L[g(t)] ・・・という例が本に載っています。 途中をどうやって計算しているのかが分かりません。 自分で考えてみますと、      = ∫[0,∞] {∫[0,t] f(τ) g(t-τ) dτ} e^(-st) dt      = ∫[0,∞] f(τ) {∫[τ,∞] g(t-τ) e^(-st) dt } dτ の間は、内側と外側の積分を交換したみたいですね。 ただ、その際に      ∫[0,t]が外側に行って∫[0,∞]      ∫[0,∞] が内側に行って{∫[τ,∞] に変換されています。ここがまず分かりません。 次に      = ∫[0,∞] f(τ) {∫[τ,∞] g(t-τ) e^(-st) dt } dτ      = ∫[0,∞] f(τ) {∫[0,∞] g(u) e^{-s(u+τ)} du } dτ の間は      u = t-τ と置いて、      t = u+τ とも置いているようです。 でも、それらを適用しただけだと      = ∫[0,∞] f(τ) {∫[τ,∞] g(u) e^{-s(u+τ)} du } dτ と、∫[τ,∞]の開始点はτのままになってしまいますよね? なぜ、0になってしまったのでしょうか? 多変数の微積分のところで二つの積分を重積分にするのをやりましたが、すっかり忘れました。 復習の意味も込めて教えてください。お願いします。

  • ラプラス・フーリエ変換の問題について

    ラプラス・フーリエ変換の問題について 毎回で申し訳ありませんが、今回もいくつか分からない問題があったので解答の方をお願いします (1)関数g(x)を求めよ ∫[-∞,∞]∫[-∞,∞]g(x-y)g(y-z)g(z)dydz = [ 2πexp{-(x^2 / 6)} ] / √3 ・積分範囲から、おそらくフーリエ変換に関する問題だと思うのですが、全く解法が思いつきません。お手数ですが、解法手順を示しながらの解答をお願いします^^; (2)X(s),Y(s)を求め、それを使いx(t),y(t)を求めよ (dx(t) / dt) = sint - ∫[0,t]y(t - τ) x(t)dτ (dy(t) / dt) = t - 3*∫[0,t][(t - τ) * { dy(τ)/dτ }]dτ (※上の式は連立方程式です。初期条件は、x(0) = 0,y(0) = 1) ・こちらの1本目の式は、畳込みよりとラプラス変換より、 X(s) = {1 /(s^2 + 1) } - X(s)Y(S) になると思っています しかし、2本目の式の積分部分が全く分からず、その上ラプラス変換の連立方程式は教科書などでも見たことがないので、お手上げ状態です。こちらも解法手順を含めた解法をお願いします^^;

  • ラプラス変換の問題

    f(t)が、t<aのとき0、t=aのとき1/2、t>aのとき1 をラプラス変換せよという問題ですが、 F(s)=∫[a→∞]e^(-st)dt={e^(-as)}/s としたのですが間違っているようです。 何故なのかどなたかご教授下さい。

  • ラプラス変換の積分法則について

    タイトルの通りなんですが、 ∫[0~t] {e^(-t)f(t)'}dt (※[ ]内は積分範囲) このラプラス変換について、解き方を教えてください。 宜しくお願いします。

  • 遅延を含むステップ関数のラプラス変換

    ステップ関数 u(t) = 1 (t >= 0) , 0 (t < 0) について、 f(t) = (t - T) * u(t - T) (Tは定数)のラプラス変換を解きたいのですが、ご教授お願いします。 x:=t - Tとおくと dx = dt, t = x + T, 積分範囲は[-T→∞]となり F(s) = ∫[0→∞] (t-T) * u(t-T) * exp(-st)dt    = exp(-sT)∫[-T→∞] x * u(x) * exp(-sx)dx となるところまでは分かるのですが、Tの符号がわからないため少し困っています。 (i) T > 0 の場合、ステップ関数で x < 0の部分が削られて積分範囲が[0→∞]となり、1次関数とステップ関数の積のラプラス変換からすぐに分かりますが、 (ii) T < 0の場合は[|T|→∞]の積分範囲で計算しなければならなくなってしまいます。 場合分けして手なりでコツコツ計算して答えは出ましたが、それでいいのでしょうか。 それともこういう問題では暗黙的にT>0とみなすものなのでしょうか よろしくおねがいします。

  • ラプラス変換

    f(t)=tsinwtのラプラス変換が分かりません。 0から∞においてF(t)=∫f(t)*e^-st*dt=∫tsinwt*e^-st*dt=∫(-(1/s)e^-st)'tsinwt*dt=[-(1/s)]-∫(-1/s)e^-st)(sinwt+wtcoswt)*dtまで解いたんですが、これを展開するとまた延々同じ事の繰り返しになってしまい、どう解いたらいいか分かりません・・・。 分かる方、お願いします。

  • 大学院入試過去問題(ラプラス変換・微分方程式)

    下記の問題の解法がわかりません。 関数f(x)のラプラス変換F(s)を次のように定義する。 F(s)=∫f(t)*exp(-st)dt   積分区間は0から∞ 以下の問いに答えよ。 (1)関数g(t)が次のように与えられるものとする。 g(t)=(2/π)*∫cos(t*tanz)dz   積分区間は0から(π/2) g(t)のラプラス変換G(s)を求めよ。 (2)関数f(x)が次の方程式 f''+2*f'+3f=g(t)    (f'',f'はtによる微分です) および初期条件 f(0)=1,f'(0)=-2 を満足するものとする。ラプラス変換F(s)を求め、その逆変換f(t)を求めよ。 (1)からさっぱり分かりません。 どなたかよろしくお願いします。

  • E(t)のラプラス変換

    http://www.ice.tohtech.ac.jp/~nakagawa/laplacetrans/Laplace9_1.htm のサイトでラプラス変換を勉強しています。 その中の6ですが、 ∫e^(-st) E dt = E ∫e^(-st) dt = E / s となっています。 しかし、EはE(t)なので、 ∫e^(-st) E(t) dt となり、部分積分が必要ではないでしょうか?ここがよく分かりません。 どうぞよろしくお願いします。