• ベストアンサー
  • 暇なときにでも

電磁気以外のガウスの定理、ストークスの定理の使い道

お世話になります。 ベクトル解析で習うガウスの定理とストークスの定理について、 電磁気分野以外で活用できる例がありましたら 教えていただけませんでしょうか。 どちらか一方でも結構です。 よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

ガウスの定理とストークスの定理はベクトル場の微分としてのrotやdivに対する逆演算としての積分に関する基本定理で、ベクトル場のあるところに個の定理は必ず現れると思っていいのではないでしょうか。ベクトル場は要するに連続体の挙動を記述すrのに用いられます。従って、流体、固体、確率密度場としての量子力学、電磁気、音場、弾性波場(個体の中の応力場の波動、せん断があることで音場より複雑)等々、なににでも出てきます。 もともとガウスの定理とストークスの定理は流体力学で用いられ始めたものです。ストークスは流体力学の基礎を築いた人です。流体力学の基本方程式である、ナビェ=ストークスの運動方程式(運動量保存則)、連続の式(質量保存則)、エネルギーの式(エネルギー保存則)は多くの場合、微分形式で書かれますが、これらをある曲面で囲まれた体積の中で積分する場合、またはその局面上で積分する場合にガウスの定理とストークスの定理が必要になります。 テンソル場でもガウスの定理とストークスの定理は定式化されており、これを使いこなせば随分格好いい議論が展開できます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます! 流体力学などいろんな分野で、微分方程式を積分するときに使うんですね。

その他の回答 (1)

  • 回答No.1

期待した回答ではないかもしれませんが ■重力場

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます!期待していた回答です。 「重力」「ガウスの定理」で検索すると、いくつか 面白い話を見つけることができました。

関連するQ&A

  • ガウスの定理やストークスの定理

    理学部で数学をべんきょしている大学3年生女子です。 独学で、3か月ほどかけてベクトル解析の本を読んでみました。 1年生の最後にやった多変数の微積部で、3次元版がはよくわかったのですが、最後に出てくるガウスの定理やストークスの定理って、どんなところに出てくるんでしょうか? 電磁気(勉強してしていないけど)で点電荷の話以外で、使われるのってありますか?

  • グリーンの定理、ストークスの定理、ガウスの発散定理 などの関連性

    境界付き多様体上の微分形式に対するストークスの定理 ∫C dω=∫∂C ω からの帰結として、 1.微積分学の基本定理。 2.正則関数についてのコーシーの積分定理。 3.グリーンの定理。 4.ベクトル解析におけるストークスの定理 5.ガウスの発散定理 などがあるらしいのですが、それらの関連性がどうも分かりません。 Cやωがどういたっときに、1~5の定理になるのでしょうか?

  • 数学科でするグリーンの定理、ストークスの定理等

    数学科の初学年の解析で、多変数関数の積分のところでガウス、グリーン、ストークスの定理が出てきます。が、簡単に済ませているような気がします。 線積分は複素解析でも必要ですが、これらの定理は数学科の高学年、大学院とかで使うことはあるのでしょうか? 数学科でベクトル解析とかあまりしないので、何に使うのかなあ、と思います。

  • ストークスの定理

    2次の微分形式1/3(x dyΛdz+y dzΛdx+z dxΛdy)の外微分を求めよ。 そして、ストークスの定理(この場合はガウスの定理ともいう)を述べ、半径rの球の体積を求めよという問題です。 外微分を計算したところ、dxΛdyΛdz になったのですが、ストークスの定理とはどういった関わりがあるのでしょうか? 教科書にストークスの定理がのっておらず、調べてみたものの今一つ関連が分かりません。 分かる方、宜しくお願いします。

  • ガウスの定理

    ガウスの定理の証明を眺めて5時間、理解できません。やっていることは面積分⇔体積積分ということですよねぇ。 だれか分かりやすく証明してもらえないでしょうか。 出来れば電磁気学の例を出してどのように使えばいいのかも教えていただけないでしょうか? 例だけでも助かります。 お願いします。

  • 工学部の方のベクトル解析の使い方

    大学で数学を勉強しています。 ベクトル解析を独習しています。多変数の微積分の発展、と理解していますが、電磁気学や流体力学でよく使われるようです。 ストークスの定理やガウスの定理は、球など綺麗なものにしか適用できなくて、複雑な物体だとうまく計算できない気がします。 ベクトル解析って工学部ではどのように使われているんでしょうか。

  • ストークスの定理について

    ストークスの定理というよりも0と2πの関係についての質問です。 ストークスの定理 ∫s curlF'・n' dS=∮c F'・dr' ('はベクトルの印)   (1) について ここで、3次元円筒座標(R,φ,z)で、次の場合を考えます。 F'=φ"/R (φ"はφ方向の単位ベクトル) これはcurlF'=0'を満たします。ですので(1)は(左辺)=0になります。 次に積分経路Cとして半径aの円周を考えて+φ方向に向かって線積分します。 このときdr'=φ"a dφ ですので (右辺)=a∫[0→2π]dφ=2πa になります。 ただこれはデカルト座標で積分すると右辺も0になるのがわかります。 0と2πというのは意味するところは同じで、三角関数が被積分関数のときはうまく機能しますが それ以外の場合はどう扱えばいいでしょうか? すごい初歩的な感じがして申し訳ないですが、ご回答お願いします。

  • ヴェクトル解析の目的

    数学を大学で勉強しています。 ベクトル解析の目的は、 ・ガウスの定理 ・ストークスの定理 かな、と思うのですが、この二つがなかなか腑に落ちません。 一体何に使えるのだろう、と思うのですが、応用例も少なく、何に使えるのだろう、と不思議でなりません。 勉強のモチベーションとして、何のために勉強するのでしょうか?

  • ガウスの定理・・・?

    「ガウスの定理を証明せよ」 という問題が出されたのですが、参考書などに取り上げられているガウスの定理の表記と、命題としてとりあげているガウスの定理の表記がやや違うのです。 参考書→ ∫[v](divA)dV=∫[s](A・dS)  ([ ]の中はインテグラルの右下のVとS、Aはベクトル場、dSのSもベクトル) 命題→  ∫[v](divA)dV=∫'[∂V](A・dS) (∫'は線積分の一周したやつ。∫の中央に○のついた。) どちらも左辺は一致するのですが、右辺がよくわかりません。特に命題の右辺でなぜ線積分が出るのか?なぜ積分の範囲が∂Vなのか?全くわかっていません。お願いします。

  • 電磁気のガウスの定理について質問です。

    大学院試の過去問をといているのですが、自分が教科書でやってきた電磁気と雰囲気が違い戸惑っています。 電位VをV(x,y,z)=x^4-y^2-z^2+10としたとき次の問いに答えよ。 (a)原点における電位を基準としたとき点P(2,1,1)の電位を求めよ。 V(2,1,1)=16-1-1+10=24V (b)電場E(x,y,z)を求めよ。 E=-gradV=[-dV/dx,-dV/dy,-dV/dz]=[-4x^3,2y,2z] (c)ガウスの定理を利用し、-2≦x≦2,-2≦y≦2,-2≦z≦2の範囲で定義される体積領域の表面を通過する全電束を求めよ。 (d)(c)で定義された領域内に含まれる全電荷量を求めよ。 (b)までは自分なりに解いたんですが(c)からわかりません。 座標系でガウスの定理を扱うのがもっている教科書に記されていなく、どうやっていけばいいかわかりません。 解答をよろしくお願いいたします。