• ベストアンサー
  • すぐに回答を!

平面図形と三角比

Q.△ABCにおいて、AB=2、BC=√19、AC=3とし、∠CABの二等分線と辺BCとの交点をDとする。 このとき、[∠CAB=120゜]であり、[BD=(2√19)/5]、[CD=(3√19)/5]である。 ADの延長と△ABCの外接円Oとの交点のうちAと異なる方をEとする。 このとき、[∠BEC=60゜]である。 これより、[BE=??]、[DE=??]である。 また、△BEDの外接円の中心をO'とすると、[O'B=??]であり、[tan∠EBO'=??]である。 -------------------- []内の??は解らなかった部分です。 それ以前の部分で間違えているかもしれませんが…(^^; ??部分の解き方を教えて下さい。 よろしくお願いしますm(__)m

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数171
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

解き方だけ 円周角の定理より、 ∠BCE=∠BAE=60° ∠CBE=∠CAE=60° なので、△BECは正三角形です。 BEは簡単ですね。 DEは△DBEに余弦定理を適用すれば出てきます。 △BEDの外接円の中心をO'とすると 正弦定理 DE/sin∠DBE=2R から外接円の半径が分かります。 △EBO'は二等辺三角形で三辺の長さが分かっていますから、二等辺三角形の高さを三平方の定理から求めれば、tan∠EBO'が計算できます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

計算に時間がかかりましたが最後まで解くことが出来ました(^^) 丁寧に教えていただきありがとうございましたm(__)m

質問者からの補足

すみません、補足で質問します。 O'Bまでは解ったのですが、その後がいまいちわかりません。 BEの中点を利用するのでしょうか?

その他の回答 (1)

  • 回答No.2
  • nag0720
  • ベストアンサー率58% (1093/1860)

>BEの中点を利用するのでしょうか? そうです。 BEの中点をFとすれば、 BF^2+O'F^2=O'B^2 tan∠EBO'=O'F/BF

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学I 三角比の図形(正弦・余弦定理)の問題

    基本的な問題ばかりですが解いてみたものの回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCでAB=4 , AC=5 , BC=2とする。 (1)cosAを求めよ。 (2)△ABCの面積を求めよ。 (3)外接円の半径を求めよ。 2.△ABCで∠A=60°, AB=3 , AC=4とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 3.△ABCでAB=5 , AC=6 , BC=√91とする。 (1)∠Aを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 4.△ABCでAB=7 , AC=5 , ∠A=60°とする。 (1)BCを求めよ。 (2)△ABCの外接円の半径を求めよ。 (3)△ABCの面積を求めよ。 5.△ABCでAB=2 , AC=4 , BC=3とする。また∠Aの二等分線とBCの交点をDとする。 (1)BDを求めよ。 (2)cos∠Bを求めよ。 (3)ADを求めよ。

  • 三角比の問題がわかりません

    △ABCにおいて、AB=3、BC=3√3、∠CAB=120°とする。 (1)CA= (2)cos∠ABC= (3)△ABCの外接円の半径R= どの公式を使うのかわかりません。教えてください。

  • 数学I 三角比の問題

    基本的な問題ばかりですが回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCの外接円をOとする。円Oの点Aでの接線をlとし、l上の点DをBDとACが平行になるようにとる。さらに AB=3 , AC=4 , AD=15/4とする。 (1)△ABCと△BDAが相似になることを示せ。 (2)BCを求めよ。 (3)円Oの半径を求めよ 2.四角形ABCDは∠D=120°, AB=BC=CA=3を満たす。対角線AC,BDの交点をPとする。 (1)この四角形は円に内接することを示せ。 (2)∠ADBを求めよ。 (3)PB:PD=2のとき、PAを求めよ。 3.△ABCでABの中点をD、ACの中点をEとし、BEとCDの交点をGとする。次のことを証明せよ。 (1)△ABCと△ADEは相似 (2)△DEGと△CBGは相似 (3)BG:GE=2:1 4.△ABCでAB上に点Dがあり、AD=AC=BC=1 , BD=CDとする。 (1)△ABCと△BCDが相似なことを証明せよ。 (2) x = BDを求めよ。 5.△ABCで∠Aの二等分線とBCの交点をDとする。また、Cを通るABに平行な直線と∠Aの二等分線との交点をEとする。 (1)△ABDと△ECDが相似なことを証明せよ。 (2)AB:BD=AC:CDを証明せよ。

  • 三角比の問題です!

    この問題よろしくお願いします^^ できれば、途中式も教えていただけたら嬉しいですm(__)m AB=c、BC=a、CA=bである△ABCにおいて、a:b:c=5:3:7であるという。 (1)このときのcosC (2)△ABCの面積が15√3であるときのcの値、外接円の半径、内接円の半径 去年の日本歯科大の入試問題らしいです゜゜

  • 向かい合う角も二等分されている?

    △ABCにおいて、∠CABの二等分線と辺BCとの交点をDとする。 ADの延長線と△ABCの外接円Oとの交点のうちAと異なる方をEとする。 このとき∠Eも二等分されているのですか?

  • 三角比の問題です

    数学IAの問題です 最初の問題を余弦定理を使い解こうとしたのですが、答えがcosC=1になってそこからがわからなくなりました 解き方や途中式を教えていただきたいです 面倒かと思いますが、できる方協力してくださるととてもありがたいです よろしくおねがいします △ABCでAB=√7、BC=3、CA=2とします (1)cosCはなにか ∠Cはなにか (2)△ABCの面積はなにか (3)cosA、sinBはなにか (4)△ABCの外接円の半径はなにか (5)∠Cの二等分線と辺ABの交点をDとすると AD、DCはなにか 多くてすみません 全部じゃなくてわかるところまででもいいのでお願いします

  • 三角比

    三角比の問題 △ABCにおいて、AB=2,BC=3,cosA=1/3である。 (1)sinAの値を求めよ。また△ABCの外接円の半径を求めよ。  sinA=(2√2)/3 R=(9√2)/8 (2)辺ACの長さを求めよ。  AC=3 (3)△ABCの外接円の直径がADとなるように、点Dをとる。このとき△BCDの面積を求めよ。   (2)まではわかりましたが(3)が分からないので教えてください。

  • 三角比について

    △ABCにおいて、AB=6、AC=4、∠BAC=60°とする。 また、△ABCの外接円の周上に点Dを、BD=2であるようにとる。 ただし、点Dは直線BCに関して点Aと反対側の弧にとる。 直線ABと直線CDとの交点をFとし、BF=a,DF=bとする。 このとき、△ACFと △D○○が相似であるので b/(a+6)=○/○ である。a,bの値は? ○とa,bの値、お願いします! 過程もお願いします!

  • 図形の問題です。

       三角形ABCにおいて、角CABの二等分線がBCと交わる点をD 直線ADが三角形ABCの外接円と交わる点をPとする。 BC=14、CA=6、AB=10とする AD、BP、APの長さを求めよ ADの答えが二つでてしまいました

  • 三角比の問題

    解答がないので合っているかわかりません。 三角形ABCにおいてAB=6,A=45°,B=75°のとき 1)BCの長さ →4ルート3 2)三角形ABCの外接円の面積 →わかりません。  半径を求めて、πを使うのでしょうか?