• 締切済み

写像で集合を求める問題です

写像 f:R→Rについて、x┃→f(x)=x,x≧0   -x,x<0 A=【1,3】,B=【-4,2】とする。次の集合を求めよ f(A),f(B),f(A)カップf(B),f(A)キャップf(B),f(AカップB),f(AキャップB)です。 答えのプリントをなくしてしまい答えがわからなくなってしまいました。 答えのみでいいので、もしわかる方がいましたらお願いします。

みんなの回答

  • nattocurry
  • ベストアンサー率31% (587/1853)
回答No.1

クラスメイトに聞いて教えてもらえばいいのに。

vens
質問者

お礼

ありがとうございました。

vens
質問者

補足

友人と一緒にやっているのですがそれでもわからなかったので投稿しました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 集合と写像

    集合と写像に関する証明で,そうなるということはわかっているのですが,どのように証明すれば良いかわかりません。 問題は 集合Xから集合Yへの写像f:X→Yによる像に関して,以下を示せ。 (1) 任意の部分集合A,B⊂Xに対して,f(A∩B)⊂f(A)∩f(B) (2) fが単射であるならば,任意の部分集合A,B⊂Xに対して,   f(A∩B)=f(A)∩f(B)が成り立つ (3) Xの任意の部分集合A,B⊂Xに対して,f(A∩B)=f(A)∩f(B)が成り立つならば   fは単射である。 どなたか解説お願いします。

  • 集合と写像

    集合と写像の問題です。 A、B:集合、写像:f、逆像:f^-1において以下の性質を証明せよとの問題です。 f(A∩B)⊂f(A)∩f(B) を証明しかつその逆f(A∩B)⊃f(A)∩f(B)が成り立たないことを反例を立てて示せ。 f(A∩B)⊂f(A)∩f(B)の証明は あるx∈A∩B⇒x∈Aかつx∈Bである。 (A∩B)⊂A (A∩B)⊂B より f(A∩B)⊂f(A) かつ f(A∩B)⊂f(B) よって f(A∩B)⊂f(A)∩f(B) で証明できてると思うんですがその逆の反例が思いつきません。 どなたかf(A∩B)⊃f(A)∩f(B) が成り立たないことを示せる方いらっしゃったらご教授願います。

  • 集合の問題です

    集合Aから集合Bへの写像fについて、Bの各要素yについてf(x)=y となるAの要素xが必ずある場合に、fをAからBの上への写像とよぶ。 たとえば、A={1,2,3,4,5}、B={a,b}のとき、f(1)=f(2)=f(5)=a , f(3)=f(4)=b とする 写像fはAからBの上への写像であるが、g(1)=g(2)=g(3)=g(5)=bとする写像gはg(x)=aとなるA要素xがないので、AからBの上への写像ではない。 問1 {1,2,3,4,5}から{a,b}への写像は全部で何個ありますか。 問2 {1,2,3,4,5}から{a}の上への写像は全部で何個あるか。また{1,2,3,4,5}から{b}の上への写像は全部で何個あるか。 問3 {1,2,3,4,5}から{a,b}の上への写像は全部で何個あるか 宜しくお願いします

  • 写像の問題なのですが…

    写像の問題なのですが… Rで実数全体の集合を表す。 f1,f2,f3,f4,f5,f6,f7をそれぞれ次の式で定義されたRからRへの写像とする。 f1(x)=x-2 f2(x)=x^2 f3(x)=x^3 -4 f4(x)=x^3 -4x f5(x)=e^x f6(x)=f2?f5 f7(x)=f2?f1?f5 これらの写像が、全単射、単射だが全射でない、全射だが単射でない、 のいずれであるかを判定しなさい。(証明は必要なし) という問題があるのですが、f4,f5,f6,f7の図がうまく描けず、 答えがないためあっているか不安です。 もしよろしければ、教えてほしいです。 お願いします。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 高校数学の写像の問題です

    a,bを実数とし,f(x)=x^2+2ax+bとする0<=x<=1を満たす実数x全体の集合をIとする (1)fがIからIへの写像を与えるためのa,bについての条件を求めよ (2)特にfがIからIへの1対1写像であるのは、どうのような場合か (2)なのですが(1)の条件が成り立ちf(x)(0<=x<=1)が単調であることが必要十分でそのためには、まずa=-1またはa=0でなければならないことから答えはa=-1,b=1またはa=b=0とあるのですが f(x)(0<=x<=1)が単調であることが必要十分でそのためには、まずa=-1またはa =0でなければならないの所が何故そのように言えなければならないのか分かりません

  • 写像と部分集合の関係

    fを集合Aから集合Bへの写像とし、A1,A2をAの部分集合、B1,B2をBの部分集合とし たとき、 f(A1∩A2)⊂f(A1)∩f(A2) と f^(-1)(f(A1))⊃A1 が成り立つそうですが、なぜ f(A1∩A2)=f(A1)∩f(A2) や f^(-1)(f(A1))=A1 とならないのかがわかりません。 (f^(-1)は逆写像です)

  • 写像について

    写像がwell-definedである定義がよく分かりません。 というのも、well-definedの定義が もしa=bであるなら写像 f(a)=f(b)である。 というのは分かります。 ですが、教科書に、正式な写像の定義とは 写像f:A->Bとは、集合AXBの部分集合(a,f(a))であり (a∈A、f(a)∈B) 写像がwell-definedである時は、(集合としての)写像の全ての最初の要素(Aに属するもの)が一度しか現れない時である。 みたいなことが書かれてました。 ですが、仮にそうだとしたら 写像 f: A->R で、f(a)=5 だとします。 ですが、5は10/2とも20/4とも同等関係にあるため、さらに5, 10/2, 20/4∈Rです。 f(a)=5, 5=10/2 で推移律から f(a)=10/2と言えるはずです。 で、b=5 b'=10/2とおくと f(a)=b, f(a)=b' となり、写像は(a,b)と(a,b')と最初の要素aが二個以上出てきます。 つまり、これはwell-definedでは無い、ということになります。 勿論(a,b)と(a,b')は同値関係にあり、上のもしa=bならばf(a)=f(b)である というのには適応しますが、 教科書の定義には反することになってしまいます。 何故ならこの写像は(a,b)と(a,b')が成立せねばならず、さらにbとb'はRに存在することから 確実に二つ以上の(実際は無限)の最初の要素がaの写像集合が出来てしまうからです。 分かりにくいかもしれませんが、もう一度言うと、 写像の中には推移律により(a,5)も(a,10/2)存在しなければならず、勿論5=10/2ですが、 二組以上存在するのは、確かです。 ということは、教科書の定義が間違っている、ということでしょうか? それとも、私の理屈に何か間違いがあるのでしょうか。。? どなたかよろしくお願いします。

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • 写像に関する問題

    f : A→Bを集合間の写像とし、g : 2^B→2^Aを   g(X)=f^-1(X) とする。ただし、Bの部分集合Xに対して、 f^-1(X)は、f : A→Bに関するXの逆像   f^-1(X)={a∈A|f(a)∈X} で定義されるAの部分集合とし、集合Aに対して、 2^AはAの部分集合全体とする。 (1)fが全写なら、gは単写 (2)fが単写なら、gは全写 であることを示せという問題ですが、 (1)   X1≠X2のとき、g(X1)≠g(X2)となることを示す。 X1,X2∈2^Bとし、X1≠X2とする。また、x1,x2∈Aとすれば、fは全写であるので、f(x1),f(x2)∈B。ここで、f(x1)∈X1,f(x2)∈X2とすれば、 ここで、X1≠X2より、x1≠x2。従って、g(X1)≠g(X2)となり、gは単写。 (2)  任意のX1をとったとき、g(X1)∈Aとなることを示す。 fは単写より、f^-1(x1)∈Aとなるような元x1∈X1が存在する (ただし、X1⊂B)。従って、写像gの定義より、 常にg(X1)∈Aとなるような元g(X1)が存在する。従って、gは全写。 上記のように考えたのですが、この考え方であっているのでしょうか? お手数ですが、どなたかご指南いただけないでしょうか? よろしくお願いします。

このQ&Aのポイント
  • ブラザー製品の旧機種(MFC-930CDN)から新機種(MFC-J739DN)に電話帳をコピーする方法がわかりません。
  • MFC-J739DNのユーティリティにはリモートセットアップというメニューがなく、電話帳のインポートができません。
  • 新機種への電話帳コピーについて、別の方法や解決策があれば教えてください。
回答を見る