• ベストアンサー

不等式の扱い方

不等式をn乗するとき、また両辺のn乗根をとるときに気を付けなければならないことを全て教えてください。 nが偶数→場合分け必要? nが奇数→場合分け不要?

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

■ a>bの両辺をn乗する場合 a>0 , b>0 の時  a^n > b^n (n≧2) a<0 , b<0 の時  a^n > b^n (n=奇数) , a^n < b^n (n=偶数) a>0 , b<0 の時  a^n > b^n (n=奇数 または n=偶数,a>|b|) a^n < b^n (n=偶数,a<|b|) ◎以上の中でn乗すると不等号の向きが変わる場合に気をつける。 a≧bの両辺をn乗する場合 上と同様に考えればよい。 ■逆に、両辺のn乗根をとる場合 a>0,b>0として a^n > b^n (n≧2、自然数)の場合 a > b a^n > - b^n (n=奇数のみ)の場合 a > -b -a^n > - b^n の場合 a^n < b^n ⇒ a < b 等号が入るa^n≧b^n, a^n≧-b^n, -a^n≧-b^n なども上と同様に考えればよい。 ◎負数のn(偶数)乗根は存在しないこと。両辺が負の場合は両辺に「-1」をかけて符号をせいにしてから、n乗根をとればよい(混乱が少なくなる)。

inquirer00
質問者

お礼

ありがとうございます! まさに求めていた回答をいただいて感激です。 私の質問は雑な質問文でしたが、丁寧に回答してくれて嬉しいです。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 絶対値の不等式

    絶対値のついた不等式をどのように絶対値を外せば良いのか わかりません。 |x|-|x+1|≦2x を解くのにどうすればよいのでしょうか? x≦-1のとき -1≦x≦0のとき x≧0とき と場合分け? 両辺を2乗? 教えてください?

  • √の不等式の解き方

    すべての実数xに対してlog(x+√x^2+1)を考える。 という問題があったのですが、問題文をしっかり読まないで、真数条件とかを確かめてしまいました。まあそれは置いておくことにして、この問題においてxの範囲が明記されてない場合、真数条件ならびに(√内部)≧0というのを調べることになると思うのですが、√が入った不等式はどのように解けばよいのでしょうか? この場合√内部が正は明らかですから真数条件からx+√x^2+1>0を示すことになります。そうすると第2項は正と分かっているので第1項についてのみ考え、結局x>0ということになるのでしょうか?仮にこの考え方があっていたとしても、他の全ての場合(√の入った不等式の解法)に通用するでしょうか? 例えば方程式の場合√だけの項を片側に移項して両辺二乗すれば√は消えて普通に解けます。(ところで二乗できるのは両辺が正だと言い切れる場合だけですよね?)不等式でもこのように二乗の考え方で解いたりするのでしょうか? 今更ですが、もしかすると√以前に不等式の解き方が理解できていないのかもしれません。こんなレベルですがアドバイスよろしくお願いします。

  • 数学的帰納法 不等式の証明

    数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

  • 不等式の証明

    不等式の証明の問題です。 a1×a2×a3×…×an=1であるならば a1×a2×a3×…×an≧n ただしak>0(k=1,2,3…,n) 相加平均と相乗平均を使って Σai/n≧n乗根√(a1×a2×a3×…×an) Σai/n≧n乗根√1 Σai/n≧1 ∴Σai≧1 と解くことは正解でしょうか? もしくは相加平均、相乗平均を使わずにとくべきでしょうか?

  • 無理不等式の√の中身を0以上に調整する理由が解りません。

    無理不等式の√の中身を0以上に調整する理由が解りません。 お手数をお掛けしますが、お教え願います。 無理不等式自体は (1)無理不等式の√の中身を0以上に調整 (2)同値変形 (3)√と反対の辺の値が正か負かで場合分けする。 例:√(2x-1)>x-1 ならばx-1>=0,X-1<0で場合分けする。 (両辺が正の場合は2乗しても不等号の向きは変わらないが、一方が負数であるとその限りではないため) (4)各場合の変数の範囲を総合的に考えて解を出す。 で解けましたが、第一歩である(1)で何故0以上と調整するのかが解りません。 すいませんが、ご指導願います。

  • (-1)^nでnを無限大にとばしたとき

    大学受験用の参考書にて、 (-1)^n はn→∞において、 nが偶数のとき1 nが奇数のとき-1 となっています。 さらに、 2n乗では1 2n±1乗では-1 となっています。 そこで質問なのですが、以前に無限大というのは数ではなく量だと聞きました。それなのになぜ偶数や奇数があるのでしょうか。また2nや2n±1でわかれるということは、無限大というのは自然数なのですか?

  •  数学の対称式の問題です。(*α,βの後ろに、[5] [2] [3] 

     数学の対称式の問題です。(*α,βの後ろに、[5] [2] [3] とありますが、これは5乗、2乗、3乗の意味です)  α+β=3,αβ=1のとき、次の値を求めよ。   α[5]+β[5]  この問題の考え方として、  (α[2]+β[2])(α[3]+β[3])    と分けるといいと書いてありました。    ですが、  例えば、今回の問題はα(5乗)×β(5乗)で、「5」つまり、奇数ですよね。これを「6」とか、他の偶数の累乗にした時求められないんです。奇数の(3は対称式の公式に載っていました)「7」では、3乗と4乗に分けて解けました。  私としては、このやり方は2乗と3乗、3乗と4乗というように、1つだけ差をおいて考えるように思うんですが・・・。   これは奇数の場合しか求められないでしょうか?  また、偶数の場合を求められるとしたらどのように求めるのでしょうか?    質問内容が拙く伝わり難い部分もあると思いますので、補足が必要な所は可能な限りしていきます。

  • 数A

    『mの2乗+nの2乗が奇数ならば,積mnは偶数である』という証明を解いていたんですが途中から解けなくなりました。 解いてください。

  • コラッツの予想ははずれた。

    ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。 最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。  では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。 この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。 ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。 従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。 有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。 少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

  • コラッツの予想ははずれました。-

    ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。 最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。  では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。 この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。 ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。 従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。 有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。 少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

通信制高校でのノートの有用性
このQ&Aのポイント
  • 通信制高校でノートをとるべきか悩んでいる方へ
  • 時間の制約があるならば、ノートをとるよりも別の勉強方法を検討してみてください
  • ノートをとるかどうかは個人の学習スタイルによるので、自分に合った勉強方法を見つけましょう
回答を見る