• 締切済み
  • 困ってます

積分の問題です。

積分の問題です。 関数f(x)が区間(-√(a^2+b^2),√(a^2+b^2))で積分可能な時、f(x)は次の式を満たすことを示せ。 ∫[0→2π]f(acosx+bsinx)dx=2∫[-π/2→π/2]f(√(a^2+b^2)sinx)dx この問題が分かる方がいましたら参考にさせていただきたいです。 よろしくお願いいたします。

  • vhk
  • お礼率29% (15/51)

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

こんばんわ。 >参考にさせていただきたいです。 どうも「参照」にされてしまいそうな気もしますが・・・ 直感的に ・三角関数の合成 ・置換積分 ・三角関数の周期性 このあたりを組み合わせるのではないでしょうか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数(3)の積分関数の問題で‥

    J=1/π∫[-π、π]{f(x)-(acosx+bsinx)}^2 dx とあったときに、 a=1/π∫[-π、π]f(x)cosx dx、b=1/π∫[-π、π]f(x)sinx dx のとき定積分Jは最小になることを示せ、という問題なのですが、Jを計算するところまではわかるのですが、その先の進め方が全くわかりません。やはり微分をするのでしょうか‥。でもそうすると、f(x)が出てきて、これの処理に困ります‥。。。 どなたかわかる方がいらっしゃたらヒントでいいのでよろしくお願いいたしますっ!!

  • 数学の積分問題に関する質問です

    実数a,bと自然数nに対して、(acosx+bsinx)^2nを閉区間[2π,0]において積分したものをIn、(sinx)^2nを閉区間[2π,0]において積分したものをJnとおく (1)In=(a^2+b^2)^n×Jnを示せ (2)JnとJn-1(n≧2)の関係式を求め、Inを求めよ できれば途中式や考え方なども明記していただけると幸いです。 あと、定積分ってキーボードではどのように打てばいいんでしょう?  見難いかとは思いますが、よろしくお願いします。

  • 数学III 定積分の問題を教えて下さい!!

    問 次の各問に答えよ (1)略 (2)定積分 ∫<0、π> {(xsinx)/(1+cos^(2)x)} dx の値を求めよ。(ただし、∫<a、b> f{x} dxとは「f(x)のaからbの定積分」を表しています。) という問題なのですが、解き方を教えて下さい。 また、どうしてそういう解き方が思いついたのかも教えていただけると有り難いです。 因みに(1)で等式∫<π/2、π> {xf(sinx)} dx = ∫<0、π/2> {(π-x)f(sinx)} dx (但しf(x)は閉区間[0,1]で連続)を証明しています。 回答よろしくお願いいたします!!

  • 積分 証明 問題

    積分 証明 問題 (1)∫[0~π](x・sinx)dxをx=π-tとおいて求めなさい。 (2)f(x)が区間[-1,1]で連続であるとき、次の等式が成り立つことを証明せよ。 ∫[0~π]x・f(sinx)dx =π/2∫[0~π]f(sinx)dx (1)はπと求めることが出来ました。 (2)も(1)と同様に置換して証明できました。 問題にある「f(x)が区間[-1,1]で連続であるとき」に関しては 特に何も考えなかったのですが「f(x)が区間[-1,1]で連続であるとき」 とは何を言いたいのでしょうか?sinxの周期は-1から1なので、 単純にf(x)が連続のときと解釈してよいですか? 以上、ご回答よろしくお願い致します。

  • 数学 積分

    (1)F(x)が0≦x≦1で連続な関数である時、∫xF(sinx)dx=π/2∫F(sinx)dxが成立することを示し、 ∫xsinx/3+sinx^2・dxを求めよ。 積分区間はすべてπから0までです。 t=π-xと置くのか定石とか書いてありますが、なぜこういうことをするのですか? それと、成立することを示した後、なぜsinx/3+sinx^2をF(sinx)と置くのでしょうか? これはそうしないと解けないのですか? 詳しくお願いします。 (2)∫|1-√2-2sinΘ^2-2√3sinΘcosΘ| 積分区間πから0を求めよ。 絶対値の中を2cos(2Θ+3π)-√2にして、それで(2Θ+3π)をtとかおいて積分区間を7π/3, π/3まではわかるんですが、それから解説だと、9π/4からπ/4までを積分すればいいとなっていますが、なぜでしょうか? 周期関数はどこから区間を始めても、定積分の値は等しいとなっていますが、なぜですか? 周期関数とはsin,cosだけでで表されてるものだけをいうのでしょうか? それ以外に周期的な関数というのは存在するでしょうか? 解説お願いします。

  • 広義積分の問題を教えて下さい

    次の問題の答えを教えて下さい。 1.次の広義積分を求めよ。ただし、r,kは正の定数とする。 (a)∫(rから∞)dx/x^2 (b)∫(0からr)dx/√r-x (c)∫(-∞から0)e^(kx)dx (d)∫(0から1)dx/x^2の三乗根 (e)∫(1から∞)dx/x(1+x) (f)∫(0から1)√(x/1-x)dx 2.次の広義積分を求めよ。 (a)∫(-1から1)dx/x (b)∫(-1から1)dx/x^2 (c)∫(-∞から∞)dx/x^2+1 3.広義積分I=∫(0からπ/2)log(sinx)dxの値を、次のようにして求めよ。 (a) I=∫(π/2からπ)log(sinx)dx=∫(0からπ/2)log(cosx)dxが成り立つことを示せ。 (b)x=2tとおいて2I=∫(0からπ)log(sinx)dxの値を計算することによって、I=-(π/2)log2であることを示せ。 4.s>0として、ガンマ巻数Γ(s)=∫(0から∞)e^(-x)x^(s-1)dxについて式Γ(s+1)=sΓ(s)が成り立つことを示せ。 5.p>0,q>0として、ベータ関数Β(p,q)=∫(0から1)x^(p-1)(1-x)^(q-1)dxについて式Β(p,q)が成り立つことを示せ。 お願いします。

  • 3次の定積分の問題です。

    (1) ∫(x-α)(x-β)g(x) dxの定積分(区間:-1→1)が0となるときのα、βを求めよ。    ただし、g(x)は1次関数である。 (2) ∫f(x) dx = f(α)+f(β) (積分区間:-1→1)を証明せよ。    f(x)は3次関数である。 という問題です。 (1)はg(x)=ax+bとおいて計算してみたのですが、  a≠0よりα+β=0  b≠0のときα=1/√(3)、β=-1/√(3)      またはα=-1/√(3)、β=1/√(3) というスッキリしない回答になってしまいました。 また、(2)を見据えた答えにならずよくわかりません。 途中計算も含めて御解答していただけると助かります。 よろしくお願いします。  

  • 広義積分の可能/不可能の判定問題

    次の式が広義積分可能かどうかを問う問題です。 (1)∫[-∞,+∞]sinx dx (2)∫[0,+∞](sinx)/x dx (3)∫[0,+∞]|sinx|/x dx (1)番は、 ∫[-a,+a]sinx dxの極限(a→+∞)を取れば0になりますが、 それ以前に[-a,+a]の極限として考えていいかどうか問題がありますし、 だからといって、[-b,+a]の極限(a,b→+∞)と考えてしまうとどうしようもありません。 ここでは詳細は書きませんが、(2)番以降も手がつけられなくて困っています。 どうか教えてください。お願いします。 もちろん1問だけでも結構です。

  • 積分の問題・・・難問

    こんばんは。今晩済ませなければならないのですが,以下の問題で悩んでいます。 ----------------------------------------------------------- f(x)は実数全体で定義された何回でも微分可能な関数で,f(0)=0, F(π)=0を満たすとする。次の問いに答えよ。 (1) ∫(0→π) f(x) sinx dx = -∫(0→π) f"(x) sinx dx を示せ (2) f(x) = x (x-π) のとき,実数aに対し F(a) = ∫(0→π){af(x) - sinx}^2 dx とする。 aを変化させたとき,F(a)を最小にするaの値を求めよ。 ----------------------------------------------------------- (1), (2)とも方針さえ検討がつきません。 (1)で 置換積分にしても,f(x) が1次式じゃないとできないような…。 問題文の条件の使い方も分かりません。 数学に詳しい方おりましたら,教えてください! 面倒そうなので,何かヒントみたいな物だけでも書き残して頂けると助かります。

  • 定積分の問題について

    定積分の問題についておしえてください 以下の問題の答えをおしえていただけないでしょうか 1.閉区間[α、β]で定義された連続関数y=f(x)のグラフを、x軸の周りに回転して得られる回転体の体積は V=π∫(αからβ){f(x)}^2dxで与えられる。これを用いて、半径aの球の体積を求めよ。 2.ε,k,Mを正の定数として、次の定積分を求めよ。 (a)∫(εから1)dx/x (b)∫(εから1)x^-kdx(k≠1) (c)∫(0からM)sinxdx (d)∫(0からM)xe^-xdx (e)∫(0からM)dx/e^x+1 (f)∫(0から1/2)dx/√1-x^2 お願いします。