• ベストアンサー
  • すぐに回答を!

cos の積分について

∫1/(1-aCOSx)^3 dx-∫(1-a^2)(SINx)^2/(1-aCOSx)^5 dx a:定数 第1項、2項目ともに積分法が良くわかりません。 一応考えてみたのが TANx/2 = t  とおき COSx = (1-t^2)/(1+t^2) SINx = 2t/(1+t^2) dx = 2/(1+t^2) として考えてみましたが、やはりできません。 解き方がわかるかたいましたら、ヒントだけでも お願いします。

noname#71616
noname#71616

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

参考URLの無料の不定積分サイトで計算してみると >∫1/(1-aCOSx)^3 dx =-(a^2+2)tanh^(-1){(a+1)tan(x/2)/√(a^2-1)}/(a^2-1)^(5/2) -a(a^2+3a cos(x)-4)sin(x)/[2(a^2-1)^2{a cos(x)-1}^2 + C >∫(1-a^2)(SINx)^2/(1-aCOSx)^5 dx 長い式になりますので参考URLの不定積分の所に (1-a^2)*(sin(x))^2/(1-a*cos(x))^5 と入力し積分の計算を実行してみてください。式が出てきます。 不定積分結果を見れは、どんな置換を使ったらいいかが分かりますので 参考にして下さい。

参考URL:
http://integrals.wolfram.com/index.jsp

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1

> 一応考えてみたのが > TANx/2 = t  とおき 考えてみたというより、どこかで見たか聞いたかしたことがあった のでしょうね。 その方法は、sin x と cos x の分数式を x で積分 するときの万能の方法です。この方法を使うと、 多くの場合、ウンザリするような計算をするハメになりますが、 ともかく、不定積分を初等関数の組み合わせで表示することが 必ずできます。 上手いやり方を何も思いつかないときは、最後の最後、諦める直前に 使ってみても良いでしょう。 ただし、計算は長くなるので、根性が足りないと、 > として考えてみましたが、やはりできません。 というようなことになります。鉢巻でも締めて、がんばって下さい。 変数を t へ置換した後、被積分関数を整理すると、 分母が { (1 + t^2)^3 }{ (1-a) + (1+a) t^2 }^5 の分数式になる と思います。コレの部分分数分解は、できましたか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の積分

    どこが間違っているのでしょうか.部分積分を利用して解こうとしました。 ∫tanx dx =∫sinx/cosx dx = (-cosx)/cosx -∫(-cosx)・{(cosx)-1}’dx = -1-∫(-cosx)(-1)・(cosx)-2・(-sinx)dx       = -1+∫sinx/cosx dx  となり 0=-1で矛盾します。 tanx = -(cosx)’/cosxとみて 答えは -log|cosx|となることはわかるのですが。上記の部分積分の間違っている点を教えてください。

  • 三角関数の積分(大学)

    次の関数の不定積を求めてください。 (1)(2ーsinx)/(2+cosx) (2)1/(2+tanx) (3)(1-acosx)/(1-2acosx+a^2) (4)(tanx)^6 (2)でtan(x/2)=tで置換したのですが複雑でとけませんでした。 ご教授宜しくお願いします。

  • 不定積分の問題

    高校数学の不定積分の問題です。 1) ∫(tanx)^4dx 2) ∫{x/(1-cosx)}dx 1)に関しては (tanx)^4=(tanx)^2*(sinx/cosx)^2 =(tanx)^2*{1-(cosx)^2}/(cosx)^2 =(tanx/cosx)^2-(tanx)^2 =・・・ というような操作をするのかと思ったのですが・・・。2)は全く不明です。お願いします。

  • 不定積分です

    ∫1/(1+tanx)dx をtanx=tとおいて解くらしいのですが、うまくいきません。 答えは1/5*log|{2(1-cosx)+sinx}/(1-cosx-2sinx)|+C  です(わかりにくくてすいません)。たびたび申し訳ありませんがお願いします。

  • 積分

    微分方程式を解く過程で  C(x) = ∫(sinx)(cosx)*e^(sinx)dx を解くことになったのですが、これは解けるのでしょうか?  ∫(cosx)e^(sinx)dx なら =e^(sinx) と解けるのですが。 ちなみにそもそもの問題は   y' + (cosx)y = (sinx )(cosx) で、定数変化法を使って解き、まず右辺=0の解が   y = Ce^(-sinx) :Cは積分定数 と求まったので、C=C(x)として最初の式に代入して今回質問した積分がでてきました。 よろしくお願いします。

  • 積分

    ∫sinx/(sinx+cosx+1)dx をtanx/2=tと置換して計算する利点はなんですか?

  • 積分、うまい解き方はないか。。。

    ∫1/(1-cosx)dx,∫sin2x/(sinx-1)はtanx/2=tと置く事によりうまく解けるのですが、これ以外の解き方はないでしょうか。この解き方だと時間が多少かかります。 極限の定石1-cosxをみたら1+cosxをかける、またこれを応用して1-ssinxを見たら1+sinxをかけるということを試みたら上のような問題が解けたことがあります。でも上のものはこの方法ではできませんでした。 上の2つの積分との解き方と、一般に入試問題で極限の考え方で通用することは多いのか少ないのかということを教えてください。 よろしくお願いします。

  • 数III 定積分の問題

    以下の定積分の問題が上手く問けません。 ∫{0→π/2}√(1+sinx)dx というものなのですが、 1+sinx=tとおいて置換積分をすると dx=dt/cosx となって、tとxが一緒に出てきてしまいってどうしたら良いか分からず、sinx=tとおいても同じような結果になってしまいました。 π/2-x=tとおいてもsinがcosに入れ替わっただけになってしまい、煮詰まってしまいました。 ヒントや考え方の指針でも良いので教えて頂けると嬉しいです。

  • 1/(a+btanx)の積分

    タイトル通りなのですが、 (1)sinxを置換する方法 (2)t=tan(x/2)と置換して、cosx,sinxをtで置く方法 (ax+log|acosx+bsinx|)/a^2+b^2となることは 分かっているのですが、途中の積分が解けません。 例.∫1/(a√(1-t^2)+bt)*2/(t^2+1)dt 簡単なほうでいいので、積分の経路を示して いただけないでしょうか? よろしくお願いいたします。

  • 積分

    (1/t)(A/t-t)^m の積分と (sinx)^m(cosx)^n の積分と (sinx)^2(cosx)^3 の積分のとき方を教えてください。