• 締切済み
  • すぐに回答を!

力学・単振り子の運動方程式について

長さLの糸に質量Mの重りをつけた振り子で最下点で水平にV0の初速を与えるという設定でまず運動方程式をたてるときに、2次元極座標をつかって、 -ML(dθ/dt)^2=MGcosθ-Tと書いてあるのですが この-ML(dθ/dt)^の部分がどのようにして導出されたか いまいちわかりません。 ご教授よろしくお願いします。

noname#194609
noname#194609

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数1649
  • ありがとう数2

みんなの回答

  • 回答No.2

-ML(dθ/dt)^2 は,円運動の通常の表記では-mrω^2です。円運動の向心加速度の大きさが,回転半径r,角速度ωとしてrω^2。与えられた運動方程式では,動径方向外向きを正にとっているのでマイナスがついています。ともに回転する座標系では「遠心力」と呼ぶこともできます。その起源については,等速円運動の基本を復習するか,もしくは運動方程式の極座標への変換を復習してください。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

運動エネルギーです。1/2*mv^2です。エネルギー保存形で考えるので位置エネルギープラス運動エネルギーが一定であるというのを使って運動方程式を導いています。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 単振り子が切れないように…

    質量mのおもりを長さrの糸に取り付けた単振り子がある。 (糸は同じおもりをもう1つ付けてもギリギリ切れない強度を持っている) この(おもり1つだけの)単振り子を糸が切れないように運動させるとき、 おもりを最大どの高さまで上げることができるか。 但し、高さの基準は振り子の最下点とする。 ↑の問題が分かりません(^^; 2mgが限界なのだから、あとmg分の力にも耐え得るということですよね…? おもりに働く張力と重力以外の力は…慣性力なんでしょうか? 解法を説明していただけると助かります。

  • ラグランジュの運動方程式の問題が解けません。

    以下の問題が解けなくて困っています。。。 どなたか教えて下さい!宜しくお願いします。 問題:図(添付)のように長さlの軽い糸の先に質量Mのおもりをつけた振り子の支点が、質量の無視できるばね(ばね定数kとする)に取り付けられている。振り子の支点Aは水平方向のみに動くことができる。振り子の支点Aの座標を(x1,0)、おもりの座標を(x,y)とする。また、ばねの長さをx0とする。座標ξ=x1-x0と糸と鉛直線のなす角θを変数としてこの系のラグランジアン、ラグランジュの運動方程式を求めよ。さらにそれを解いて規準振動を求めよ。

  • 力学 振り子

    【問題】質量mのおもりと長さaの振り子を作る。この振り子は、鉛直平面内で自由に 回転できる(上に壁があるわけではない)。摩擦は無視できるものとする。 問題(A)座標系を適当に設定して運動方程式をたてよ。なお、鉛直線に対する 振り子の角度θとする。他に必要な記号があれば自分で設定すること。 問題(B)時刻t=t0において、おもりは最下点にあり、速さVで運動を開始した とする。このVの値が小さければ振り子は往復運動をおこない、大きければ 大車輪のような回転運動をおこなう。両者の境目となるVの値を求めよ。 この値をVsとする。 問題(C)ちょうどV=Vsとした場合について、運動方程式の解を求め、 角度θの時間変化を図示せよ。長時間経過後の漸近的な挙動に注意すること。 【考えたこと】 問題(A)ma(d^2θ/dt^2)=-mgsinθ 問題(B)力学的エネルギー保存の法則を定式化して、おもりが頂点に来たとき速度0、最下点に来たとき速度Vsとなる 問題(C)力学的エネルギー保存則の式を微分方程式として解く θとtの変数分離形で解けない。 (B)と(C)がここまでしか分からないです。

  • 単振り子の問題

    長さL軽い糸の先に、質量mのおもりのついた単振り子があり、最下点において水平に速度vを与える。重力加速度g、空気の抵抗は無視する (1)糸がたるまずに振動するためのvの条件を求めよ。 (2)糸がたるまずに回転運動するためのvの条件を求めよ。 全然わかりません。 特にたるまない条件ってところが ヒントをください。 おねがいします。

  • 振り子運動が円運動に変わる?

    次のようなクイズが新聞にのっていました。 長さ約60cmのタコ糸の一端に20gくらいのおもりを、他端に小さなダブルクリップを結びつけます。おもり側を片手で支えた丸い棒にひっかけ、他方の手でダブルクリップを持ち水平に糸をのばします。 ダブルクリップを離すと、クリップはおもりに引っ張られ、棒のほうに行きますが、おもりと一緒に、棒の反対側に落ちるのではなく、糸が棒にくるくる巻き付いて、おもりの落下を止めます。 このようになる理由は、次の通りだと書かれています。 手から離れたクリップは、おもりに引かれると同時に振り子運動を始める。おもりの落下につれて、その振り子の糸はどんどん短くなる。 糸が短くなれば、振り子の振れ方は速くなり、最後は円運動に変わる。 そのため糸は棒に何回も巻きつき、おもりの落下を途中でとめる。 振り子の周期がどんどん短くなるとなぜ円運動になるのか理解できません。 どなたか説明していただけないでしょうか。 よろしくお願いいたします。

  • 単振り子の運動方程式

    重力加速度g、質量m、紐の長さl、空気抵抗無視。 単振り子の運動方程式はこうなりますよね。 mlθ"=-mgsinθ これがよくわからないのです。 どういう座標系についての運動方程式なのですか? 軌道にそってx軸を定めると θl=x mx"=-mgsinθ  軌道に沿った運動方程式? ⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの? そしてこれの一般解はどういう風になりますか? 初期条件としてt=0でθ=φとします。

  • 単振り子にて初速度v0を与え角度を求める式

    昔、高校時代に習った記憶があるのですが、式が思え出せなくて困っていますので、お願いいたします。 単振り子において、最下点で水平に垂らした状態に、v =v0 の初速度を与えるとき、振り子が振れる最大角度を求めるというものです。 条件としては、糸長さL、質量M。

  • 力学に関する問題です。

    長さXの糸の端に質量mのおもり、他端を点Oで固定し振り子とする。 糸が鉛直方向と角θをなすように点Aまで持ち上げて、静かに離した。 離した直後の糸の張力の大きさはいくらか? 私の解答 0=Tcosθーmg T=mg/cosθ 模範解答 0=T-mgcosθ T=mgcosθ 分解した力が違うだけで答えが合わなくなってしまいます。 もしかして力の分解の時に何か忘れている条件があるのかもしれません。 それも含めてご回答していただけると幸いです。 よろしくお願いします。

  • 物理の振り子の問題

    ちょっとわかりにくいかもしれませんが、振り子エネルギーの問題がわかりません。 1 質量mのおもりに、長さl(エル)のひもをつけ、一方を固定します。 2 おもりを固定した高さまで上げ、手を離したとき、おもりが真下に来たときのおもりの速さ。 3 真下に来た直前の糸の張力 4 真下に来たとき、長さl(エル)の1/2のところに釘(点p)があり、以後は点Pが固定点となります。 5 この、新しい固定点を決めたときの糸の張力 6 そのまま重りは運動を続け、糸がゆるみ始めたときの点Pと水平となす角をθとしたときのsinθ のうち、2・3・5・6を教えてください。

  • 振り子の問題

    天井に振り子を取り付け、振り子を揺らしている時、振り子の根元と天井との接続点には、振り子が最下点に来たとき、振り子の重力および"振り子の遠心力と同じ大きさの力"が、接続点から振り子の軸と平行に外側に働いていると思います。 ということは、例えば、 トランポリンの上を人がぴょんぴょんと垂直に飛び跳ねる時、質量mの錘を抱えながら跳ねるのと、振り子の先端に質量mの錘を付けてその振り子の根元をその人の頭に取り付けて跳ねるのとでは、(振り子の周期と飛び跳ねる周期とを合わせれば)後者の方がより少ない筋力で同じ跳躍量が得られるのでしょうか? 振り子の根元にはねじりバネが配置されており、振り子の振れ角に比例した弾性力を振り子に発生させるとします。 力学的に解説いただければ幸いです。 ご教授のほどよろしくお願いします。