- 締切済み
おねがいします
x>0でsinx+cosx>1+x-x^2と y=x+a/x(aは正の定数)が極値を持つことを証明してください おねがいします
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- info22
- ベストアンサー率55% (2225/4034)
回答No.1
問題を2つに分けること。 問題の丸投げにあたります(マナー違反)のでヒントだけにします。 前半) x>0でsin(x)+cos(x)>1+x-x^2を証明しなさい。 f(x)=(左辺)-(右辺)とおいて f(x)の増減表を作って f(x)>0 (x>0)を示せば (左辺)>(右辺)(x>0) を示せます。 後半) これも y=f(x)=x+a/x (x>0) の増減表を作ってください。 f'(x)=0となるx=√aで極小値をとることが示せます。極大値は存在しません。
お礼
解けました ありがとうございます