• ベストアンサー

集積点について教えて下さい。

集積点であるとは、aのどんな近くにも集合Aの或る点が無数に存在することである。 ということですが、 例えば、実数はだと全て数において、集積点に属し、 整数は全て孤立点に属すると思うのですが、合っていますでしょうか? このように全ての点が集積点或いは孤立点であるという例は思いつくのですが、 いくつかの点が集積点でいくつかの点が孤立点という例が思いつきません。 どなたか教えて頂けないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
noname#221368
noname#221368
回答No.3

>集積点であるとは、aのどんな近くにも集合Aの或る点が無数に存在することである・・・ という質問者様の定義、#1さん例からもわかるように、集積点,孤立点は、最初に「集合A」を決めておかないと、何も言えません。「集合A」の集積点,孤立点ですから。  集合Aとして、ドーナツ領域の内部と境界および中心点の合併をとれば、ドーナツの縁の点はAの集積点,中心点はAの孤立点です。なので、 ・実数全体Rに対して、その任意点はRの集積点(そもそもRの閉包はRで、有理数全体がすでにRで密なので). ・整数全体をRの部分集合Nと考えた場合、Nの任意点はNの孤立点(Rの位相は、Nより細かいから). ・上記二つで、Rの位相はユークリッド距離によるものとする. という意味でならそうです。

その他の回答 (2)

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

何より、日本語の文法が合ってないんですが。 集積点かどうかは、その集合に入れる位相 に依って異なりますが、 実数からの相対位相で考えているなら、 それでいいでしょう。

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

単位分数に 0 を加えた { 1/n | nは自然数 } ∪ { 0 } では、 0 が唯一の集積点で、その他は孤立点。

Taruuuto
質問者

お礼

ありがとうございます。 実数はだと全て数において、集積点に属し、 整数は全て孤立点に属すると思うのですが、 という部分は合っているのでしょうか? よろしくお願いいたします。

関連するQ&A

  • 集積点の集合(導集合)の問題

    集積点の集合(導集合)の問題 固有名詞を出して恐縮ですが、「微分積分学 I、II」(三村征雄、岩波全書)で集積点の所を勉強しています。 同書(I、p74)に於ける集積点の定義は次の通りです。 Aを距離空間Xの部分集合とするとき、1点pの任意のε-近傍V(p、ε)が少なくとも1つpと異なるAの点を含むならば、すなわち、pからεより近いところにpと異なるAの点が存在するならば,pはAの集積点であるといい、Aの集積点全体の集合をA^aで表す。A^aはAの導集合と呼ばれる。 この定義のあとにいくつかの例題があります。 (1) A={1/n},n∈N とすれば、A^a={0}、すなわちこの場合、集積点は0ただ1点である。 (2) R(実数)において、 i)Iを閉区間[a,b] とすれば、I^a=I (skylark 注:この行の二つのaは互いに無関係です) ii)Iを開区間(a,b)とすれば、I^a=[a,b] 「これらのことは図によって容易に確かめることができる」書いてあります。実際、図をかいてみるとすぐ分かることなのですが、式でも確かめてみようとしました。 ところが、これがなかなかの苦戦。上の定義から2~3行で証明できると高をくくっていたのですが、うまくいきません。自分が発見できないだけなのでしょうが。簡単に証明する方法がありましたら教えてください。よろしくお願いいたします。 ちなみに、私の解答は次の通りです。 (1) の解答 p∈Rとして、∀ε>0 をとり、近傍V(p,ε)を考える。 (1) p=0 のとき もしε>1ならば、近傍V(0,ε)はAの元をすべて含むので、ε≦1と考えてよい。逆数をとって 1/ε≧1となる。このとき 1/ε<No となるような或る自然数Noが存在するので ε>1/No d(0,1/No)=1/No<εすなわち1/No∈V(0,ε) ∴p=0はAの集積点。 あとは、 p<0, 0<p<1、1≦pで場合分けをする (1) p<0 のとき d(p,0)=-p>ε>0 であるεをとり、近傍V(p,ε)を考える。 p-ε<p<p+ε<0 となるのでどのようなAの元もV(p,ε)に属さない。よって p<0 はAの集積点ではない。 (2) 0<p<1 のとき 1/p>1だから∃Noがあって No≦1/p<No+1 ゆえに1/(No+1)<p≦1/No そこでmin(d(p,1/No),d(p,1/(No+1))=εoとし εo>ε>0なるεをとると、V(p,ε) はAの元を含まない。よって 0<p<1 はAの集積点ではない (3) 1≦pの場合 (1)とほぼ同様にしてできる。 (2) も(1) と同様の考え方でできる。 ここまで書いてくると、木を見て森を見ず の感が強いのですが、もっとよい手法がありましたらよろしくお願い申し上げます。

  • 閉包と集積点と内部

    閉包と集積点と内部(及び境界)の関係を、初心者でもわかるように教えていただけないでしょうか。特に、それらが集合において何を意味しているのかを教えていただけないでしょうか。 閉包A ̄は、 任意のxの近傍V(x)において、V(x)∩A≠φ(φは空集合)であるxの集合 集積点a(A)は、 T∩(A-{x})≠φとなるxの集合 (Aの相違な元列が1点Pに近づくときのPのこと…?) 内部i(A)は、 Aに含まれる位相空間(X,τ)の開集合全体の和集合である。i(A)={a∈A:V(a)⊂Aとなる近傍V(a)が存在する}

  • 位相空間における集積点

    U(n)={n∈N|n,n+1,n+2,…} O={Φ}∪{U(n)} と与えられています。(N:自然数、Φ:空集合) (N,O):位相空間におけるA={1,3,5,7,9}の集積点を求める問題で、質問があります。 私が解いた結果、集積点は 1,2,3,4,5,6,7,8 だなって思ったんです。(これあってますよね??) で、問題はその後なんですけど、9以上の自然数が集積点でないことを示した方がいいですよね。その場合、 9≦x∈N については、  x∈U(n)となるU(n)は 1≦n≦x だが、  U(i)∩A=Φ (for i≧9, i∈N) したがって9以上の自然数は集積点ではない。 っていう証明で、示せてますか??なんか論理的じゃない気がして…。アドバイスしてもらえませんか。よろしくお願いします。

  • 集積点の定義について

    松坂和夫先生の解析入門3(岩波書店、ラングの本とは別)を読んでいます。 P63に集積点の定義があります。 Xを距離空間とし、AをXの部分集合とする。Xの点aがA-{a}の触点であるとき、すなわち、 a∈(A-{a})の閉包 が成り立つとき、aはAの集積点とよばれる。 となっています。 閉包の定義ですが、同書P53に 定義 Aの内点または境界点である点を触点といい、Aの触点全部の集合をAの閉包という。 とあります。 ここからが疑問ですが、 上の定義によれば(A-{a})の閉包というのはA-{a}の内点または境界点ということになります。 ところが、aはA-{a}の内点ではありません。なぜなら、もしaがA-{a}の内点であるとすると、あるr>0に対して、r近傍Bは、 B(a;r)⊂A-{a}となりますが、右辺はaを含みませんので成り立ちません。 すると(A-{a})の閉包というのは、境界点のみを含むとなってしまいますが、私の推論は正しいでしょうか。「(A-{a})というのは、境界点のみの集合」とはじめから言えばいいことのように思えるのです。精査よろしくお願いいたします。

  • 稠密について、集積点(触点)、閉包って何ですか?

    http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q14133159999 上記URLのベストアンサーの回答より下記引用します。 ーーーー引用しますーーーー  (3)稠密  集合Pの集積点(触点)をすべて付加した集合をPの閉包とい  う。Pバーであらわす。稠密とは、P⊂Q,Pバー⊃Qのとき、P  はQで稠密であるという。 ーーーー引用終わりーーーー 1がある。 1の次のものがあって、それは2である。 2の次のものがあって、それは3である。 3の次のものがあって、それは4である。 4の次のものがあって、それは5である。 5の次のものはない。 集合Q Q={1,2,3,4,5} 集合P P={2,4} 集合R R={2,3} PはQで稠密でない。だって、間があるから。間は3です。 RはQで稠密である。だって、間がないから。 とするとき、集積点(触点)や閉包が分からないです。 集積点(触点)や閉包はどうなりますか? Pの要素の2のQでの両隣の要素は集積点(触点)で1と3。 Pの要素の4のQでの両隣の要素は集積点(触点)で3と5 Pの閉包をPバーと呼ぶ。 Pバー={1,3,5} Pバー={1,3,5}⊅Q={1,2,3,4,5}   Qの要素の2と4が余るのでQはPバーに含まれない。 P={2,4}⊂Q={1,2,3,4,5}     Pの要素が余らないのでPはQに含まれる。 PはQで稠密でない。 間があるから。 Rの要素2のQでの両隣の要素は集積点(触点)で1と3。 Rの要素3のQでの両隣の要素は集積点(触点)で2と4。 Rの閉包をRバーと呼ぶ。 Rバー={1,2,3,4} Rバー={1,2,3,4}⊅Q={1,2,3,4,5}  Qの要素の5が余るのでQはRバーに含まれない。 R={2,3}⊂Q={1,2,3,4,5}     Rの要素が余らないのでRはQに含まれる。 RはQで稠密でない。 間が無いから。 稠密であることと間が無いことが合致してほしいのだが、すっき りしないです。 ⊂と⊆は同じ意味とする。 ⊂と⊊は違う意味とする。 ⊂は部分集合の意味とする。 ⊆は部分集合の意味とする。 ⊊は真部分集合の意味とする。 ⊄と⊈は同じ含まれない、真部分集合でなく、かつ、部分集合で もない。という意味とする。 稠密について、集積点(触点)、閉包って何ですか? 分数をたくさん用意しないとうまくいかないのではなかろうか? 分数をたくさん用意しても、間があるのを言うのは簡単そう。間 は1/2ですって言えそう。 分数をたくさん用意すると、間がないのを言うのは難しそう。ぜ んぶそろってるのかな?

  • 境界点について

    S={x:xは有理数で、0<x<1}とするとき、Sの境界点の集合と集積点の集合を求めよという問題で、答えは、Sの境界点からなる集合={x:0≦x≦1}、Sの集積点からなる集合=Sとなる理由がわかりません。 僕は、Sの境界点からなる集合は{0、1}と思い、例えば、x=1/2のときはSの内点になってしまい、{x:0≦x≦1}ではだめな気がします。 また、Sの集積点からなる集合={x:0≦x≦1}でもいいきがします。 よろしくおねがいします。

  • 対角線論法(?)について

    オートマトン言語理論計算論I(サイエンス社)という本の第7、8ページに すべての無限集合が等しい濃度を持つわけではない例として、 「整数全体の集合と実数全体の集合について考えてみよう。仮に、実数の 全体が正整数と1対1に対応づけられたとする。そのとき、各 i=1,2,3,… について小数点以下 i 桁目が、第 i 番目の実数(上の対応で正整数 i に 対応づけられた実数)の小数点以下 i 桁目の数字に法10のもとで5を加え た数であるような実数を考える。するとこれは上で正整数と対応づけられた どの実数とも異なる数である。このことから、実数全体と正整数を1対1に 対応づけることがそもそも不可能だったことがわかる。」 とあり、この議論が対角線論法と呼ばれるそうですが、何度読んでもさっぱ り理解できないのです。 特に 「そのとき、各 i=1,2,3,…について小数点以下 i 桁目が、第 i 番目の実数 (上の対応で正整数 i に対応づけられた実数)の小数点以下 i 桁目の数字に 法10のもとで5を加えた数であるような実数を考える」 がイメージできないのです。 もし対角線論法について理解されてる方がいらっしゃいましたら、是非とも ご教授願いませんでしょうか? よろしくお願いします。

  • 数の集合・・・

    数の集合は、自然数、整数、有理数、実数というように拡大していく。 「自然数から整数、整数から有理数への拡大」と、「有理数から実数への拡大」 には本質的に異なる点がある。それは何か、ということを教えてください! お願いします!!

  • 開集合・閉集合

    二つのことがわからないので、質問しました。 (1)実数全体は開集合ですか?それとも閉集合ですか? (2)(1、無限大)は開集合ですか?閉集合ですか? 内点、集積点を考えなければならないと思うのですが、いまいち、ピンときません。

  • 集積誤差とは?

    よろしくお願いいたします。 集積誤差とはどういうことをさすのですか? (例)A製品は、A1、A2、A3の部品構成であり 許容公差が、A1=±0.1、A2=±0.2、A3=±0.3 であるときはどのようになるのですか。 いろいろ探したのですが確かな回答がわからず困っています。 よろしくお願いいたします。