• 締切済み

微分・極限値

計算について質問です よろしくお願いします /は普通の分数 /は普通の分数の下にまた分子がくるという意味です 1. 次の関数f(x)を定義によって微分しなさい。 f(x)=1/x f´(x)=lim h →0 f(x+h)-f(x) =lim h →0 1/x+h-1/x /h =lim h →0 1/h{x-(x+h)/x(x+h)} =lim h →0 -1/x(x+h) =-1/xの二乗 このlim h →0 1/x+h-1/x /hのとき なぜlim h →0 1/x+hではなく、hもxと一緒になって分子に移動しているのかがわかりません。 その計算方法を教えてください よろしくおねがいします。

みんなの回答

  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.2

>f(x+h)=fx+fh=1/x+fhとなると考えてしまう のはなぜでしょうか f(x+h)≠f(x)+f(h)です(成り立つ時もありますが) f(x+h)というのは言い換えればxにx+hを代入したものです 別の言い方をすればx+h=tと置けば f(x+h)=f(t)=1/t=1/(x+h) ですね

Nana-park
質問者

お礼

回答ありがとうございます わたしは、XとYはそれぞれ違う数字として別々に考えるものだと思っていました。 (X+Y)というのは一つの数字なのですね。。。 ありがとうございます!

全文を見る
すると、全ての回答が全文表示されます。
  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.1

f(x)=1/x f´(x)=lim h →0 {f(x+h)-f(x)}/h =lim h →0 {1/(x+h)-1/x} /h…(1) ここで 1/(x+h)-1/x =x/x(x+h)-(x+h)/x(x+h) より(通分です) (1)→lim h →0 1/h*{x-(x+h)/x(x+h)} =lim h →01/h*(-h)/x(x+h) =lim h →0 -1/x(x+h) =-1/xの二乗 です

Nana-park
質問者

補足

早速の回答ありがとうございます 最初のf(x+h)に 微分の定義にf(x)=1/xを代入すると f(x+h)=fx+fh=1/x+fhとなると考えてしますのですが なぜ 1/x+h とhもしたにくるのですか? よろしくお願いします。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数学 微分 問題

    次の関数のx=1における微分係数f(1)を定義から計算せよ。 (1)f(x)=3x+1 微分に対してまだ初心者なんでよく分からないのですが、 f(a)=lim{f(a+h)ーf(a)}/hという公式に当てはめていけばいいんでしょうか?    h→0

  • 微分の極限値(注:初心者)

    高校数学の本で微分の極限値の説明で、 lim(x→1) x^2 - 1/x-1=(x+1)(x-1)/x-1=lim(x→1) x+1=2 という式が書いてるのですが、これは結局 f(x)=x+1 という1次関数のlim(x→1)の場合のf(x)の極限値の事ですが、なぜ最初わざわざ分数で表して約分でx+1に変形してからxに1を代入するような説明なんでしょうか?最初の分数の状態でxに1を代入すれば分母も分子も0になり、そこで式が終わってしまうという事が言いたいだけなんでしょうか?なぜこういう説明があるのかが理解できません。微分係数のf'(x)=f(x+h)-f(x)/h の式でhにいきなり0を代入したらそこで式が終わってしまうという事を説明するためなのでしょうか?この文の必要性がいまいち分かりません。わかりにくい質問かもしれませんが引っかかるので、質問の真意がわかる人お願いします。ようするに、なぜ最初 x^2 - 1/x-1=(x+1)(x-1)/x-1 という分数で表してその後約分で x+1 の形に持ってくるような書き方なのかが知りたいんです。

  • 微分/極限値/導関数の問題

    社会人ですが、高校の時、苦手で全く出来なかった微分の勉強を独学でしてますが、解き方が分からない問題と解けたのですが答えが分からない物があります。教えて頂けると助かります。(どう書くのが正しいのかわからなかったので、分数:二分の一は1/2のように書きます) 当方、本当に微分初心者です。宜しく御願いします。 1.次の極限値を求めよ lim(x^3-3x+2)/(x-1)^2 x→1 2.以下の導関数を求めよ 1) y=(2x+3)/(x^2+1) 2) y=xsinx 3) y=1/1+cosx 4) y=sin^100x (sinの100乗かけるX) 5) y=sinx^100  (sinx100乗)

  • 微分の問題

    数学の問題がわかりません。 だれかアドバイスお願いします。 問1 次の極限値を求めよ。    (1) lim[x→π/2](1-(sinx)^3)/(1-sinx) 問2 次の片側極限値を求めよ。  (2) lim[x→-0]x/|x| (3) lim[x→-1+0]x/(x+1) 問3 次の極限値を求めよ  (4) lim[h→0](1-e^(ah))/(h+ah^2) (a≠0) (5) lim[x→0]e^x-e^(-x)/x 問4 (6) 3次方程式 f(x)=x^3+ax^2+bx+c=0は少なくとも1つの実数解をもつことを証明せよ。 問5 次の関数はx=0で微分可能であるか?    (7) f(x)=|x(x-2)| (8) f(x)=|x^3| 問6 次の関数のx=1における微分係数を定義に従って求めよ。    (9) y=x^2+2 問7 次の導関数を定義に従って求めよ。    (10) y=x^2+2 わかる範囲での自分の考え  (1) x-π/2=tとおいてこの問いを解く  (9)と(10) f'=(f(x+h)-f(x))/hの方法で解く。この2題は考え方が同じになってしまうのですが、これでいいのでしょか? あとは、よくわかりません。 わかる方、教えてください。 お願いいたします。  

  • 微分係数を求める問題で

    f(x)=-2[二乗]-3x+1 について (x=0)の微分係数を求めよ。 という問題で 導関数の式に当てはめていくと f(0)’=lim h→0 -4a-2h+3 となりました。 この後どのように答えればよいのでしょうか? 教科書などを見ても分からずとても困っています>< どうかよろしくお願いします。

  • 微分可能ではない点と極値

    y'が存在しないことがわからないので質問します。問題は、 次の関数の極値を求めよ (1) y=2x+3³√x^2 (2)y=|x|√(x+1) というものです。 (1) 関数の定義域は実数全体で、y=2x+3x^(2/3)であるから、ここがわからないところです。x≠0のとき、y'=2+3*(2/3)x^(-1/3) インターネットで調べたところ、y=0(x=0のとき)は微分可能なのに、x=0を除く理由がわかりません。またy’={2(³√x+1)}/³√xを出したあと、分母は0にならないからx≠0とするのは納得できますが、y'を計算する前に、x≠0と判断する理由がわかりません。本ではy’=0 のとき³√x=-1, 関数yはx=0のとき微分可能ではない。x=-1で極大値1 x=0のとき極小値0をとる。と書いてあります。またf(x)=2x+3³√x^2と置いて微分係数、lim(h→0){f(0+h)-f(0)}/hを計算したら、 lim(h→0) 2+3h^(-1/3)となり計算できませんでした。これがx=0を除いた理由なのかとも思いました。  (2)定義域はx+1≧0からx≧-1, x≧0のときy=x√(x+1) ここもわからない点ですが、 x>0のとき、y'=√(x+1)+x/{2√(x+1)} >0 (1)と同様x=0が除かれる理由がわかりません。続きは -1≦x<0のとき y=-x√(x+1) y'を計算して、y'=0のときx=-2/3 関数yはx=-1,0で微分可能ではない。ゆえにx=-2/3で極大値(2√3)/9,x=0で極小値0をとる。最後のわからないところが、x=-1のとき微分はできない点です。 どなたか(1)のx=0で微分可能ではない (2)のx=-1,0で微分可能でない理由を教えてください。

  • 偏微分係数。

    次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}=   lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。

  • 微分の定義に関して

    微分の定義に関してなのですが、参考書を読んでいたら微分の定義のところに次のように 書かれていました。 関数f(x)が点pで微分可能⇔適当な実数aと関数g(x)が存在して、 (イ) f(x)=f(p)+a(x-p)+g(x) (ロ) lim{x→p}(g(x)/(x-p))=0 が成立する。 このとき、aをf(x)の点pにおける微分係数という。 この定義の説明を見てもいったいなんのことを言っているのかさっぱりわかりません。 今まで微分の定義というと lim{x→p}(f(x)-f(p))/(x-p)というのしか習ったことがなかったので、この定義が何を表しているのか 分かりません。 そもそもg(x)がなんなのかaがなんなのか分かりません。 できれば図形的意味も教えていただけるとありがたいです。 よろしくお願いします。

  • 指数関数の微分

     こんにちは、高1の者です。 指数関数の微分について質問があります。 y=a^x を微分にするとき、導関数の定義より lim {a^(x+h) - a^x}/h h→0 =lim a^x(a^h-1)/h h→0 として、h→0のとき、a^h-1→0だから 分母のhと分子のa^h-1を約分して、 与式=a^x となるのでしょうか? ググっても自然対数eやらばかり出てきてよくわかりません。 よろしくお願いします。

  • 微分法 極限値の求め方が分からない・・・

    導関数を先にやっていたのでどうにも極限値の求め方が分かりません。 f(x)=2x^2-4x なら f'(x)=4x-4 と言った感じで導関数の公式を用いてできるのですが、limの問題がさっぱりです。 例えば lim x^2(x+4) 【x→-2】 これだと全てのxに-2を代入して=8となるのに lim x^2+4x-5 / x^2+x-2 【x→1】 は一度分解して  lim (x+5)(x-1) / (x+2)(x-1) としてから (x+5) / (x+2) として、ここに代入して答えが=2となるんでしょうか? 私は最初の段階で代入してしまい失敗します(分母0なんて存在しないですから違うのは分かるんですが) 数値を入れて良いのはどの段階からでしょうか? また、導関数の問題なんですが f(x)=x-3 / 2x+1 と言った感じで分数の形になっている問題は専用の公式みたいな物があるんですか?それとも普通に f'(x)=1 / 2 になるんでしょうか?

このQ&Aのポイント
  • お名前ドットコムのDNS設定画面がどこにあるか知りたいです。
  • お名前ドットコムでMailgunのDNS設定をする方法を教えてください。
  • お名前ドットコムの設定画面にはTXTやMXの値を設定する項目がありません。どこに設定すればいいでしょうか?
回答を見る