• ベストアンサー
  • 暇なときにでも

にゃんこ先生の自作問題、4実数a,b,c,dとその基本対称式の符号の可能性

にゃんこ先生といいます。 3実数a,b,cと、基本対称式a+b+c,ab+bc+ca,abcにおいて、その符号の可能性を下のように調べました。 a,b,cの符号が分かると、abcの符号は一通りに決まるので、それは省略します。 a>0,b>0,c>0ならばa+b+c>0,ab+bc+ca>0 a>0,b>0,c<0でa+b+c>0,ab+bc+ca>0の例:a=3,b=3,c=-1 a>0,b>0,c<0でa+b+c>0,ab+bc+ca<0の例:a=1,b=1,c=-1 a>0,b>0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=1,c=-3 a>0,b>0,c<0でa+b+c<0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca<0の例:a=3,b=-1,c=-1 a>0,b<0,c<0でa+b+c<0,ab+bc+ca>0の例:a=1,b=-3,c=-3 a>0,b<0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=-1,c=-1 a<0,b<0,c<0ならばa+b+c<0,ab+bc+ca>0 では、4実数a,b,c,dと、基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcd(これは省略する)において、その符号の可能性はどうなるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数117
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

f(x) = (x-a)(x-b)(x-c)(x-d) として、 f'(0) = ab+ac+ad+bc+bd+cd f''(0) = 2(abc+abd+acd+bcd) … とかを考えるか。 逆に、 g(x) = x^4 + αx^3 + βx^2 + γx + δ が4つの実数解をもつ条件を考えるのか。 もっと頭いい方法がある気もします。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • にゃんこ先生の自作問題、基本対称式が正なら元の数も正か?

    にゃんこ先生といいます。 2実数a,bがあるとします。 基本対称式a+b,abがすべて正であれば、a,bはすべて正であることがわかります。 3実数a,b,cがあるとします。 基本対称式a+b+c,ab+bc+ca,abcがすべて正であれば、a,bはすべて正であることもわかります。 ここまでは確かめました。 次に、4実数a,b,c,dがあるとします。 基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcdがすべて正であれば、a,b,c,dはすべて正なのでしょうか? さらに、そのn変数のときはどうなるのでしょうか? 計算では手に負えなくて、別の考えがいりそうなのですが、わからないです。

  • 対称式について

    数学の対象式について質問です。   a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc という対称式を、3文字の基本対象式である   a+b+c   ab+bc+ca   abc で示すとどのようになりますか? ちなみに、問題自体は「因数分解せよ。」というもので   (a+b)(b+c)(c+a) が答えでした。 気になって計算してみたのですが、どうしても示すことができなかったので質問しました。 よろしくお願いします。

  • (a^(n+1)-b^(n+1))/(a-b)の基本対称式での表し方

    対称式 (a^(n+1)-b^(n+1))/(a-b)=a^n+a^(n-1)b+…+ab^(n-1)+b^n を基本対称式a+bとabを用いて表すことを考えました。 色々と実験してみたところ Σ{i=0 to n/2}(-1)^iC(n-i,i)(ab)^i(a+b)^(n-2i) という形で表されるらしいことが分かりました。 ここで、C(n-i,i)は二項係数です。 しかし、どうにも証明ができません。 どなたが、証明の方法をご教授頂ければ幸いです。

  • 対称式の問題ですが・・・

    abc≠0  , a+b+c=0 , a^2+b^2+c^2=1 , bc+ca+ab=-1/2 とする。 このとき、 a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b) の値を求めよ。 という問題で、答えは【-3】となるらしいのですが、 求め方が全然分からないので詳しい求め方を教えてもらえないでしょうか? ちなみに、 1/b は、b分の1 という意味です。

  • 【対称式の問題】

    (1)a^2+b^2+c^2=1をみたす複素数a.b.c.に対して x=a+b+cとおく。 このとき、ab+bc+caのxの2次式で表せ。 (2)a^2+b^2+c^2=1,a^3+b^3+c^3=0,abc=3 をすべて満たす複素数a,b,cに対してx=a+b+cとおく。 このとき、x^3-3xの値は? 答えがないので困ってます(><) (1)は1/2(x^2-1)で正しいですか? (2)がいまいちわかりません 解ける方いらっしゃいましたら、 解説お願いします。

  • 対称式

    こんばんは。 よろしくお願いいたします。 x=2+√5,y=2+√3, z=-(√5+√3)/2のとき、次の式の値を求める問題で質問があります。 1/x^3+1/y^3+1/z^3-3/(xyz) 私は a=1/x, b=1/y c=1/zとおいて、 a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abcの法則を使って説いたのですが、解答は[0]らしいので最後に3abcをかけたらおかしいなと思いました。 どういった考えをすればよいでしょうか。 よろしくお願いいたします。

  • 交代式と対称式って?

    (a+b)(b+c)(c+a) どの二つの文字を入れ替えても、元の式と同じになる式を対称式という (a-b)(b-c)(c-a) どの2つの文字を入れ替えても元の式と符号だけ変わる式を交代式という。 この二つの文字を入れ替えるとは、具体的に どういうことですか?? どうぞよろしくお願いします!

  • 対称式の因数分解について

    因数分解について、 例えば、 a^2(b-c)+b^2(c-a)+c^2(a-b) = -(a-b)(b-c)(c-a) bc(b-c)+ca(c-a)+ab(a-b) = -(a-b)(b-c)(c-a) a(b+c)^2+b(c+a)^2+c(a+b)^2 = (a+b)(b+c)(c-a) のように完全に対称性が保たれているものがありますが、 この因数分解を容易に(感覚的に?)行う方法・考え方はないでしょうか? ある1文字について降冪に整理して・・・とテキストにありますが、 その手法でははく対称性または対称群と絡めて捉えることができれば おもしろいと考えています。 よろしくお願いします。

  • にゃんこ先生の自作問題、3つの無理数の和と積が無理数か有理数かにおいて、すべての可能性がありうるか?

    にゃんこ先生といいます。 2つの有理数a,bがあるとき、その和と積は閉じています。 2つの無理数a,bがあるとき、その和と積は閉じていないですが、次のようにすべての可能性の例があることを調べました。 a+b=有、a*b=有、の例:a=√2、b=-√2 a+b=有、a*b=無、の例:a=√2、b=1-√2 a+b=無、a*b=有、の例:a=√2、b=√2 a+b=無、a*b=無、の例:a=√2、b=√3 では、3つの無理数a,b,cがあるとき、その和a+b+cと、積abcと、ここで仮に積和と呼ぶab+bc+caと、ここで仮に和積と呼ぶ(a+b)(b+c)(c+a)が、有理数か無理数かにおいて、すべての可能性はあるのでしょうか? 和と積と積和と和積がそれぞれ有理数か無理数かにおいては、2^4=16通りの可能性がありますが、すべての可能性の例はあるのでしょうか?それともありえないパターンはあるのでしょうか?

  • (1)ab(a+b)+bc(b+c)+ca(c+a)+2abc

    (1)ab(a+b)+bc(b+c)+ca(c+a)+2abc    =…(a+b)(b+c)(c+a) (2)a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)    =…(a-b)(b-c)(c-a)           と問題があり、 (1)は対称式であり、(2)は交代式であると説明がなされていて、 さらに、  対称式は、a+b、b+c、c+a の1つが因数なら他の2つも因数  交代式は、(a-b)(b-c)(c-a) を因数にもつ。 と、説明がなされているのですが、なぜ、  対称式は、~他の2つも因数  交代式は、~を因数にもつ のかが分かりません。誰か知られている方がおられましたら、教えて下さい!!