• 締切済み
  • 暇なときにでも

にゃんこ先生の自作問題、四角形の対角線の交点をベクトルで表したときに見つけた等式

にゃんこ先生といいます。 平面上に四角形ABCDがあるとします。4点は順に左回りとします。 また、同じ平面上に原点Oがあって、ベクトルOA=aなどと、矢印を省いて書くことにします。 直線ACと直線BDの交点Pを書き表したいと思います。 AP:PC=△ABD:△BCDから、 p=(△BCD/□ABCD)a+(△ABD/□ABCD)c と書けます。 ここで、2次元ベクトルの第三成分を0として、3次元ベクトルとみなします。すると、外積を用いて、 △BCD=|(c-b)×(d-b)|/2=|b×c+c×d+d×b|/2 などとなります。三角形の面積を符号付面積と考えて、 △BCD=△OBC+△OCD+△ODB=|b×c+c×d+d×b|/2 と考えることも出来ます。したがって、整理して、 (|a×b+b×c+c×d+d×a|)p=|b×c+c×d+d×b|a+|a×b+b×d+d×a|c となります。また、図から、 (|a×b+b×c+c×d+d×a|)p=|a×c+c×d+d×a|b+|a×b+b×c+c×a|d となります。したがって、 |b×c+c×d+d×b|a+|a×b+b×d+d×a|c=|a×c+c×d+d×a|b+|a×b+b×c+c×a|d という等式を見つけたのですが、これだけ見て、代数的に等しいことを示すにはどうやったらよいのでしょうか? また、3次元空間で、平面ABCD外に原点Oがあって、ベクトルOA=aなどと、矢印を省いて書くことにします。 AP:PC=△ABD:△BCD=四面体OABD:四面体OBCD で、 四面体OBCD=det(b,c,d)/6=(b×c)・d/6 となることから、 det(b,c,d)a+det(a,b,d)c=det(a,c,d)b+det(a,b,c)d や {(b×c)・d}a+{(a×b)・d}c={(a×c)・d}b+{(a×b)・c}d という等式を見つけたのですが、これだけ見て、代数的に等しいことを示すにはどうやったらよいのでしょうか? いいアイデアがありましたら教えてください。 △ABCなどの面積を、平面ベクトルa,b,cと内積,根号を用いて、 (2△ABC)^2=|a-c|^2*|b-c|^2-{(a-c)・(b-c)}^2 =(a^2)(b^2)+(b^2)(c^2)+(c^2)(a^2)-2(a^2)(bc)-2(b^2)(ca)-2(c^2)(ab)-(ab)^2-(bc)^2-(ca)^2+2(ab)(ca)+2(bc)(ab)+2(ca)(bc) ただし、a・a=a^2、bc=b・cなどと略記 と表されることからも等式が見つかります。 複雑すぎて等式を書くことはしませんが、その等式だけ見て、代数的に等しいことを示すにはどうやったらよいのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数528
  • ありがとう数1

みんなの回答

  • 回答No.1

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみませんが、リンク先は僕には参考になりません。 質問内容は、ベクトルa,b,c,dに関する恒等式 |b×c+c×d+d×b|a+|a×b+b×d+d×a|c=|a×c+c×d+d×a|b+|a×b+b×c+c×a|d の幾何学的直感によらない証明法です。

関連するQ&A

  • にゃんこ先生の自作問題、4実数a,b,c,dとその基本対称式の符号の可能性

    にゃんこ先生といいます。 3実数a,b,cと、基本対称式a+b+c,ab+bc+ca,abcにおいて、その符号の可能性を下のように調べました。 a,b,cの符号が分かると、abcの符号は一通りに決まるので、それは省略します。 a>0,b>0,c>0ならばa+b+c>0,ab+bc+ca>0 a>0,b>0,c<0でa+b+c>0,ab+bc+ca>0の例:a=3,b=3,c=-1 a>0,b>0,c<0でa+b+c>0,ab+bc+ca<0の例:a=1,b=1,c=-1 a>0,b>0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=1,c=-3 a>0,b>0,c<0でa+b+c<0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca<0の例:a=3,b=-1,c=-1 a>0,b<0,c<0でa+b+c<0,ab+bc+ca>0の例:a=1,b=-3,c=-3 a>0,b<0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=-1,c=-1 a<0,b<0,c<0ならばa+b+c<0,ab+bc+ca>0 では、4実数a,b,c,dと、基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcd(これは省略する)において、その符号の可能性はどうなるのでしょうか?

  • にゃんこ先生の自作問題、基本対称式が正なら元の数も正か?

    にゃんこ先生といいます。 2実数a,bがあるとします。 基本対称式a+b,abがすべて正であれば、a,bはすべて正であることがわかります。 3実数a,b,cがあるとします。 基本対称式a+b+c,ab+bc+ca,abcがすべて正であれば、a,bはすべて正であることもわかります。 ここまでは確かめました。 次に、4実数a,b,c,dがあるとします。 基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcdがすべて正であれば、a,b,c,dはすべて正なのでしょうか? さらに、そのn変数のときはどうなるのでしょうか? 計算では手に負えなくて、別の考えがいりそうなのですが、わからないです。

  • 空間図形の問題です

    四面体OABCがあって、OA=OB=OC=3,AB=BC=CA=2とする。A(↑a),B(↑b),C(↑c)とする。 平面OBCに関してAと対称な点をDとすると、 ↑ODは正射影ベクトルの考え方など駆使して -a+7/5(b+c) と表せることがわかりました(すみません、ベクトルの矢印は省略しました)。 そして、その次の小問が分かりません。 平面OCDに関してBと対称な点をEとするとき、四面体EABCと体積は四面体OABCの体積の比を求めよ。 という問題です。 回答よろしくお願いします……

  • ベクトルの等式の証明

    高校数学Bからの質問です。 『ABベクトル+BCベクトル-ACベクトル=0ベクトル、を証明しなさい』という問題です。 ごく初歩的な質問なのですが(ベクトル習いたてです)、解答解説の証明の過程に、ACベクトル+CAベクトル=AAベクトル=0ベクトル、とあったのですが、AAベクトル=0ベクトルという過程は踏んでおいたほうがよいのでしょうか? 僕はABベクトル+BCベクトルからACベクトルを導き、後は単純にACベクトル-ACベクトル=0と考えたのですが、何か問題はあるでしょうか? 宜しくお願いします。

  • ベクトルの問題

    △ABCについて、ベクトルAB、ベクトルBC、ベクトルCAに関する内積を、それぞれ(ベクトルAB)・(ベクトルBC)=x、(ベクトルBC)・(ベクトルCA)=y、(ベクトルCA)・(ベクトルAB)=zとするとき、△ABCの面積をx、y、zを用いて表せ。 △ABCにおいてAからBCにひいた垂線の足をOとおいて、Oを原点とするXY座標平面上にBCとX軸が一致するようにあらわして、それぞれの座標をかってにきめて内積と外積の関係から面積を求めようとおもったのですが、先生から外積を使わずに解いてくれといわれました。 もっと簡単な方法があるとのことですが、まったくわかりません。 どなたかヒントをください! よろしくおねがいします。

  • 因数分解

    ab(a&#65293;b)+bc(b&#65293;c)+ca(c&#65293;a) ={ab(a&#65293;b)+ca(c&#65293;a)}+bc(b&#65293;c) =(b-c)a^2-(b^2-c^2)a+bc(b&#65293;c)    ←aの2乗、(bの2乗-cの2乗)a =(b-c){a^2-(b+c)a+bc}          の意味がわからない =(b-c)(a-b)(a-c) =-(a-b)(b-c)(c-a)

  • 四面体の体積を求める際の、高さの求め方。

    四面体ABCDがある。 AB=BC=3 BD=1 AD=2√2 AC=2√5 CD=2√3 である時、四面体ABCDの体積Vを求めよ。 体積(V)=底面積×高さ×1/3  「高さ」を求められず、この式が使えません。 解答では、「△BCDを底面とすると、ADが高さになる。」…とありますが、底面△BCDから頂点に伸びる線は3本あり(AD、AC、AB)、なぜ、ADが「高さ」になるのか、わかりません。 正四面体であれば答えられるのですが、この問題は考えてもまったく分かりませんでした。 教えてください。よろしくお願いします。

  • ベクトルについて

    △ABCで(→BC)=(→a),(→CA)=(→b),(→AB)=(→c)とし |(→BC)|=a,|(→CA)|=b,|(→AB)=(→C)とする また、(→b)・(→c)=-2, (→c)・(→a)=-3,(→a)・(→b)=-4 とする 問題1 (→a),(→b),(→c)の間に成立する関係式は?=(→0)である ベクトルABとベクトルBCとベクトルCAをつないで図を書いたのですがよくわかりません 問題2 (a^2)+(b^2)+(c^2)=?である 問題一を2乗すれば解けるような感じがするのですが 問題3 a=?である。 で問題2はわかりました。 問題1 、→a+→b+→c=→0 となると流れで覚えてしまったのですが どうしてこうゆうになるのかわかりません。 (→AB)+(→BC)=→AC を使うそうですがよくわかりません 問題3なのですが →c・→a+→a・→b=→a・(→c+→b) と変形できます。あとは →c+→b を、→a+→b+→c=→0 より… →c+→b =-(→a) →a*-(→a)になるのですが?? よくわかりません

  • 外接球について

    球Pに内接する四面体ABCDがある AB=BC=CA=a、CD=b、∠ACD=∠BCD=90゜とする 球Pの半径をa、bを用いて表せ という問題で、そもそも立体図を描けず詰んでいます 立体図の書き方と解き方を教えてください

  • 数学がわかりません

    四面体ABCDは AB=AC=AD=3√7、 BC=√14、CD=5√2、DB=3√6 である。 このとき、∠BDC=30° △BCDの面積= (15√3)/2 外接円の半径=√14 また頂点Aから△BCDを含む平面に下した垂線をAHとするとき AH=7 (1)線分AH上に点EをAE=BE=CE=DEとなるようにとれることに注意すれば 4頂点ABCDを通る球面の半径はア/イである。 (2)以下、△BCDを含む平面上で考える。 △BCDの外接円をOとし、頂点Bを通りCDに垂直な直線と円Oとの交点で頂点B以外のものをFとする。 さらに、直線BCと直線DFの交点をGとすると 四角形BCFDの面積= ウエ√オ、 △GFCの面積=(カキ√ク)/ケコ である。 過程もお願いします。