• ベストアンサー
  • すぐに回答を!

ベクトルの問題です。

△ABCの頂角Aの二等分線と辺BCの交点をD、AC=b、AB=cとする。 また、辺AB、AC上にそれぞれ単位ベクトルベクトルAE=ベクトルe、ベクトルAF=ベクトルfをとる ベクトルAD=k(ベクトルe+ベクトルf)とあらわせることを示してください。 また、Dは辺BCをc:bに内分できることをしめしてください。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数79
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ferien
  • ベストアンサー率64% (697/1085)

>△ABCの頂角Aの二等分線と辺BCの交点をD、AC=b、AB=cとする。 だから、 頂角Aの二等分線がADだから、BD:DC=AB:AC=c:b >また、辺AB、AC上にそれぞれ単位ベクトルベクトルAE=ベクトルe、 >ベクトルAF=ベクトルfをとる  だから、 ベクトルAB=c(ベクトルe),ベクトルAC=b(ベクトルf) >また、Dは辺BCをc:bに内分できることをしめしてください。 BD:DC=c:bより、 bベクトルBD=cベクトルDC 以下は、ベクトルということでお願いします。 b(AD-AB)=c(AC-AD)より、 (b+c)AD=bAB+cACだから、 AD={b/(b+c)}AB+「c/(b+c)}AC より、ADは、BCをc:bに内分する。 >ベクトルAD=k(ベクトルe+ベクトルf)とあらわせることを示してください。 AD={b/(b+c)}AB+{c/(b+c)}ACだから、   ={b/(b+c)}c(ベクトルe)+{c/(b+c)}b(ベクトルf)   ={bc/(b+c)}(ベクトルe+ベクトルf) でどうでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 とてもわかりやすいでした

関連するQ&A

  • ベクトルの問題2

    三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について  △ABC=○  △ABE=○  (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。

  • 平面ベクトルと図形

    平面上に△ABCがあり、AB=5.BC=aとする。∠Bの二等分線が辺ACと交わる点をD.辺BCを5:2に内分する点をE.BDとAEの交点をF.CFの延長とABの交点をGとする。(1)ベクトルAE=〔ア〕ベクトルAB+〔イ〕ベクトルACである。(2)AD:DC=〔ウ〕:〔エ〕であるから、ベクトルAD=〔オ〕ベクトルACである。(3)ベクトルDE=〔カ〕ベクトルAB+ベクトルACであるから、DE平行ABとなるのはa=〔ク〕のときである。(4)ベクトルAF=〔ケ〕ベクトルAB+〔コ〕ベクトルACである。(5)ベクトルCF=〔サ〕ベクトルCGである。(6)△ABC=2△ABFとなるのは、a=〔シ〕のときである。…という問題です。長々とすいません。本当に分からなくて困ってます。〔ア〕~〔シ〕までの回答をできれば解説つきでよろしくお願いします。

  • 平面ベクトルと図形

    平面上に△ABCがあり、AB=5.BC=aとする。∠Bの二等分線が辺ACと交わる点をD.辺BCを5:2に内分する点をE.BDとAEの交点をF.CFの延長とABの交点をGとする。(1)ベクトルAE=2/7AB+5/7ACである。(2)AD:DC=5:aであるから、ベクトルAD=5/5+aである。(3)ベクトルDE=2/7AB+5(a―2)/7(5+a)ACであるからまでは分かるんですがその続きのDE平行ABとなるのはa=4になるのがよく分かりません。一度教えていただいたんですが…教科書のヒントにはDE平行ABとなるための条件は、ベクトルDE=kベクトルABを満たす実数kが存在すること。とあるんですが、このヒントを使っての解き方が分かりません。お願いします。教えて下さい。

  • ベクトル

    △ABCにおいて、辺ABを3:1に内分する点をD、辺BCを2:3に内分する点をEとし、線分CDと線分AEの交点をFとする。ベクトルAB=ベクトルa、ベクトルAC=ベクトルbとして (1)線分DCをt:(1-t)に内分するとして、ベクトルAFをベクトルaとベクトルbを用いて表せ (2)3点A,F,Eが一直線上にあると考えて、ベクトルAFをベクトルaとベクトルbを用いて表せ (3)ベクトルAFをベクトルaとベクトルbを用いて表せ という問題があります (1)は ベクトルAF=(1-t)ベクトルAD+t×ベクトルAC       =(3/4)(1-t)ベクトルa+t×ベクトルb と解けたんですが 2と3が先に進めません どうやってすればいいでしょうか 高校の数Bの平面ベクトルのところです

  • ベクトルの問題 内分点?

    AD平行BCかつBC=2ADである台形ABCDにおいて辺CDを8・1に内分する点 をE、また対角線AC、BDの交点をPとする。 このとき、AEをAB,ADで表せ。 こんにちは、よろしくお願いします。 答えなんですが、 ACベクトル=ABベクトル+2ADベクトル ・・・1 である。 と、ここまでは分るのですが、次の また、AEベクトル=8ADベクトル+ACベクトル/9 とあるのですが、どうやったらこうなるのかが分りません。 辺CDを8・1に内分する点Eに内分の公式使っていると思うのですが。 よろしくおねがいします。

  • ベクトルの問題です

    ベクトルの問題です AB=4,BC=3,CA=2である△ABCにおいて、角Aの二等分線が辺BCと交わる点をD、角Bの二等分線が辺ADと交わる点をIとする。 1)ADベクトルをABベクトル、ACベクトルを用いて表せ。 →ABベクトル+ACベクトル/2 2)CIベクトルをABベクトル、ACベクトルを用いて表せ。 →? 1)は合っているのでしょうか。 2)は解き方がわかりません。 解説よろしくお願いします。

  • ベクトルの問題です。

    三角形ABCの辺BCを1:2に内分する点をD、辺ABを1:2に内分する点をE、ADとCEの交点をPとする。 (1)ベクトルAPをベクトルABとベクトルACで表すと、 ベクトルAP=□分の□ベクトルAB+□分の□ベクトルAC と表せる。 □の部分に数字が入ります。 (2)BPとCAの交点をQとするとき、CQ:QAとBP:PQを求めよ。 答えだけでいいです。

  • 改めてベクトルの問題なのですが・・・

    投稿した問題が間違っていたので改めて投稿しました。わざわざ解答頂いた方にはホントに申し訳ありません。改めてご教授よろしくお願いします 三角形ABCにおいて, AC=b AB=c とし、BCの中点をM, 角BACの二等分線と辺BCの交点をDとする。 また直線ADに点Bからおろした垂線の足をEとし、直線AMと直線BEの交点をFとする。 この時, ベクトルAF, ベクトルDFをベクトルAB, ベクトルACを用いて表せ。 という問題で、まず内分点の公式からベクトルAM, ADを表して、直線BEと直線ACの交点をGとすると三角形ABGが二等辺三角形になることからベクトルAGをベクトルACで表わし、点Fは直線BG上に存在し、かつ直線AMの延長線上にも存在することからベクトルAFを二通りで表す、というやりかたで解き、最終的に答えが(以下ABなどの表現はベクトルとしてください…) AD=(b/b+c)AB+(c/b+c)AC, AF=(c/b+c)AB+(c/b+c)AC=(c/b+c)AB+(b/b+c)AG, DF=(c-b/b+c)AB という結果になりました。それで疑問に思ったのが (1)BCについてはBD:DC=c:b, Mが中点だったのが、BGについてはBF:FG=b:c, EがBGの中点と、点M, DとAM, ADの延長線上の点F, Eについて、中点と~に内分する点という関係が逆転して内分比も逆になっています。 また結果として (2)AB//DFとなります。 ガリガリ計算してみると確かにこうなるのですが、このような操作をして二点とその延長線上の二点の対応関係が逆になったこと、DFが結果としてABと平行になることがなんとなく不思議に思います。 こう、この操作は~こういうことをしているからだ!っとすっきりと言える理由ってあるでしょうか。 よろしくお願いします。

  • ベクトルの問題なのですが・・・・・

    三角形ABCがあり、AB=AC=√3、cosA=2/3である。 辺BCの中点をD、辺ABを2:1に内分する点をEとし、線分ADを直径とする円をKとする。 直径DEとKの交点のうちD以外の点をFとする。 点PがK上を動くとき、内積AF・APの取りうる値の範囲を求めよ。 ベクトルは省略させていただきます。 どうやって求めたらいいのかが分かりません。 教えてください!!

  • ベクトルの問題です。教えてください!

    三角形ABCがあり、AB=AC=√3、cosA=2/3である。辺BCの中点をDとする。 辺ABを2;1に内分する点をEとし、線分ADを直径とする円をKとする。 直線DEとKの交点のうち、D以外の点をFとする。点PがK上をうごくとき、 内積AF・APの取りうる値の範囲を求めよ。 (ベクトルは省略させていただきます) どうやって考えたらいいのか分かりません。 詳しく教えてください! よろしくお願いします。