• ベストアンサー

x≠1⇒xの二乗≠1の真偽

apple2911の回答

回答No.1

偽です。 理由は、まさにtsubasaKさんが書かれたとおりかと・。 『X=-1⇒Xの二乗=1』ですから偽ですよね。

noname#80069
質問者

お礼

分かりました。 ありがとうございます! もう一問聞きたいのですが… x+y>0⇒「x>0またはy>0」を対偶考えて証明せよ。 これの対偶は 「x≦0かつy≦0」⇒x+y≦0ですよね? この後どうすればいいんですか?

関連するQ&A

  • 真偽

    命題「x+y<0⇒xまたはy<0」の逆、対偶をつくり、その真偽を言いなさい。 偽である場合には反例を挙げなさい。

  • 命題 裏の真偽

    数学Iで与えられた命題「xy=0 ならば x=0 かつ y=0」…(△)は偽である。 (△)の逆「x=0 かつ y=0 ならば xy=0」……真である。 (△)の裏「xy≠0 ならば x≠0 または y≠0」…真である。 (△)の裏は(△)の逆の対偶ということで真とされて参考書の答えになっていたのですが、 この(△)の裏は偽だと思います。反例 x=1,y=0のときxy=0 になってしまいます。 参考書の間違いなのか、私の考え方が間違っているのかコメントください。

  • 命題の真偽(逆、裏、対偶)

    『𝓍, yは実数とする。𝓍 ≠ 0 → 𝓍y ≠ 0の命題の真偽を調べよ。また、その逆、裏、対偶を述べ、それらの真偽を調べよ。』次のように考えました。正解かどうか教えてくれませんか。間違いなら理由などコメントしてください。お願いします。 逆) 𝓍y ≠ 0 → 𝓍 ≠ 0 真 裏) 𝓍 = 0 → 𝓍y = 0 真 対偶)𝓍y = 0 → 𝓍 = 0. 偽(反例:y=0, 𝓍=1) したがって命題は偽である。

  • 真偽判定

    いつもお世話になっております。 次の命題の真偽を求め、偽である場合は反例をあげよ (1)X^2=6ならばX=√6である。 X=±√6 であるので、偽であると考えました。 (2)空間において交わらない2直線はねじれの位置にある。 ねじれとは?? 反例という意味もわかりません(逆、裏、対偶なら参考書に載っていたのですが) どのようにとけばいいのか、教えてください。 よろしくお願いします。

  • この命題の真偽は何ですか?

    次の命題の真偽は何ですか? 「x,yは実数とする.x>0ならば,あるyについてxy>0である.」 確かにy>0のyに対してこれは成り立っていると思います. しかし,この命題の対偶である 「x,yは実数とする.すべてのyについてxy≦0ならば,x≦0である.」 が偽であるような気がします. 反例:x=1,y=-1 ではやはり,最初の命題は偽なのですか?

  • 真偽について

    今、数学で真偽みたいなのをやっているんですが、どの命題も真が偽のどちらかになるんですか?(聞き方悪くてすみません) 例えば、X=2かつY>3ならばXY=8である はYが4なら真になるけど他は偽になるじゃないですか このときどうすればいいんですか?

  • 命題の真偽を調べよ。

    集合を用いて、次の命題の真偽を調べよ。 ・|x|<3 ならば、 x<3 私の回答は、 -3<x<3より、不適。 よって、偽。(反例、x=-4) なのですが、回答には真。と書かれていました。 どこを見落としたのかも、分かりません。 因みに問題が載っているのは、数研出版の「スタンダード数学I+A」、 p,102 第2章 論理と集合 15、命題と条件の、問い167の(1)になります。 お手数ですが、ご意見・ご回答お願いします。

  • 至急‼真偽。

    命題「x+y<0⇒xまたはy<0」の逆、対偶をつくり、その真偽を言いなさい。 偽である場合には反例を挙げなさい。 【逆】 【対偶】

  • 否定の真偽

    冬休みの宿題で分からないところがあります。 <問題> 次の命題の否定をつくり、その真偽を調べよ。 全ての実数x,yについてx(2)+y(2)>0((2)は2乗の意味です) 否定は「ある実数x,yについてx(2)+y(2)≦0」 これは合ってました。 でも、この否定は「偽」と思ったんですが、答は「真」でした。 どうしてですか? ぜひ教えて下さい!

  • 命題の真偽。

    次の命題の真偽を調べ、偽である場合には反例を挙げなさい。 x^2≧4⇒x≧2 x^2=1⇒x=-1 mが巣数⇒mは奇数 整数nについて、n^2≦4⇒-3≦n≦3 教えてください。お願いします!