- ベストアンサー
この命題の真偽は何ですか?
次の命題の真偽は何ですか? 「x,yは実数とする.x>0ならば,あるyについてxy>0である.」 確かにy>0のyに対してこれは成り立っていると思います. しかし,この命題の対偶である 「x,yは実数とする.すべてのyについてxy≦0ならば,x≦0である.」 が偽であるような気がします. 反例:x=1,y=-1 ではやはり,最初の命題は偽なのですか?
- みんなの回答 (4)
- 専門家の回答
関連するQ&A
- 命題の真偽(逆、裏、対偶)
『𝓍, yは実数とする。𝓍 ≠ 0 → 𝓍y ≠ 0の命題の真偽を調べよ。また、その逆、裏、対偶を述べ、それらの真偽を調べよ。』次のように考えました。正解かどうか教えてくれませんか。間違いなら理由などコメントしてください。お願いします。 逆) 𝓍y ≠ 0 → 𝓍 ≠ 0 真 裏) 𝓍 = 0 → 𝓍y = 0 真 対偶)𝓍y = 0 → 𝓍 = 0. 偽(反例:y=0, 𝓍=1) したがって命題は偽である。
- ベストアンサー
- 数学・算数
- ある命題の真偽の理解につきまして
x, y を実数とするとき、命題「xy != 6 ならば x != 2 または y != 3 である」は、対偶を考えれば、真であることは即座に理解できるのですが、対偶を考えずに表記の命題を直接、直感的(もしくは論理的)に理解したいのですが、どうも頭の中がすっきりしません(記号 != はノットイコールの意味で用いています)。 添付図のように xy = 6 の双曲線を書いて、「xy != 6 ならば」、「(x, y) = (2, 3) を満たしさえしなければよい」というのは納得できるのですが、表記の命題を見た瞬間に直感的に理解したいのです。 当たり前のことと言えば、当たり前のことなのですが、どうもモヤモヤが残っています。 ド・モルガンの法則を習ったときのように、一方は直感的に理解できるのに、他方は直感的に理解できないもどかしさを感じています。 雲を掴むような質問でたいへん恐縮ですか、表記の命題を即座に直感的に理解できる方は、どのような感覚(もしくは、その背景にある論理的思考?)で理解されているのでしょうか? なにかしらアドバイス頂けないでしょうか? よろしくお願いいたします。
- ベストアンサー
- 数学・算数
お礼
ありがとうございます. この命題(対偶)は真なので反例は関係ないのですね. すべてのyについてxy≦0を満たすxはx≦0(x=0のとき)なのですね. やっと分かりました. これからもよろしくお願いします.