- 締切済み
- すぐに回答を!
群論
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 回答No.1
- kt1965
- ベストアンサー率34% (116/339)
普段の記法とは全然違うので、困っているのですが・・・。 (G:G*)は別に素数でなくても良かったりします。偶数でも、奇数でも、はたまた複素数でも・・・。その後の証明論を展開する上で大変なので、素数に限定しているような証明の気がします。 実際には、可換性を持つ群において、その中における部分群は必ず元群の性質を持つというような証明をしていかないと、その証明は定理になりえないのですが・・。まあ、Wikipediaあたりの証明だと、そこまでやっていないようですね。
関連するQ&A
- 群論の同型定理について
同型定理Bの証明について分からないので教えてください。 画像内の証明は参考書の証明です。 この過程が分かりません。 埋め込み写像とか、写像iやρが準同型になる理由など… KerfやImfが分かったところで、なぜ正規部分群になるのでしょうか? 1行ずつ分かりやすく説明していただけたら助かります。 正規部分群、核および像、準同型定理がどういうものかはなどは理解しています。 色々と分からないのですがよろしくお願いします。
- 締切済み
- 数学・算数
- 群論の証明
xy平面における合同変換群O2(R)をGとし、回転部分群Rot(V2(R))をHとする。 また、x軸に関する対称変換をfとする。このとき、G=H∨fHとなることを証明せよ。 とあるのですが証明できません。 ここまで調べてきたことは、 xy平面の回転群Rot(V2(R))は直交変換群O2の正規部分群であること。 正三角形の合同変換群<(12)、(13)>において、回転変換からなる部分群<(123)>は正規部分群であること。 です。 これらをうまく利用して解くのだとは思いますが、いざ文章で表記した時にどう書けばいいかわからないのが現状です。 最悪アドバイスだけでもかまいません。 どうかよろしくお願いします。
- 締切済み
- 数学・算数
- 群論「可解群」について
Gを群とする. 「Gの正規部分群Nに対し,NとG/Nがともに可解群ならば,Gもまた可解群である.」 この証明なのですが,途中がわかりません. (∵) G/Nは可解群だから,G/Nの正規列 G/N=G_0/N⊃G_1/N⊃…⊃G_m/N=N/N であって,同型定理より,商群 (G_(i-1)/N)/(G_i/N)≒G_(i-1)/Gi (≒は同型の記号としてください) がアーベル群となるものが存在する. このとき「G_iはG_(i-1)の正規部分群」であることに注意する.…(?) また,Nが可解群だから,Nの正規列 N=G_m⊃G_(m+1)⊃…⊃G_r={e} であって,商群 G_(j-1)/G_j がアーベル群となるものが存在する.このとき, G=G_0⊃G_1⊃…⊃G_m=N⊃G_(m+1)⊃…⊃G_r={e} はGの正規列であって,その商群はアーベル群よりなる. よってGは可解群である. Q.E.D とあったのですが,途中の(?)の部分がわかりません. なぜ「G_iはG_(i-1)の正規部分群」となるのでしょうか? 詳しい方お願いします.
- 締切済み
- 数学・算数
- x^2 ≡ 1 mod n
nが素数で nを法とする既約剰余群(Z/nZ)*において 位数が2の元は-1だけであることを示したいのですが、 x^2 ≡ 1 mod n ⇒ (x-1)(x+1) ≡ 0 mod n ⇒ x = ±1 ではダメでしょうか。 ある本だと 以下の定理を使っています。 「Gを有限巡回群とする。|G|の任意の約数dに対して位数dのGの部分群が唯一つ存在する。」 この定理より nの既約剰余群において、位数2の元は-1のみ。 しかし、この定理の証明が私にとって難解で、まったく理解できません。 結局、位数2の元が-1だけであることを言いたいので x^2 ≡ 1 mod nを 上記のように解けば説明になっているのでは?と思いました。 x^2 ≡ 1 mod n を解くだけで説明になっているでしょうか? アドバイスお願いします。 また、もしできたら 「Gが有限巡回群のとき… |G|の任意の…」 の定理の証明をわかりやすく説明していただけないでしょうか。
- 締切済み
- 数学・算数
- 群論について(部分群)
群Gが正規部分群Nと、部分群Hを持つとします。 このとき、HNはGの部分群となり、NはHNの正規部分群になるみたいなのですが、これは何故なのでしょうか? よろしくお願います。
- 締切済み
- 数学・算数
質問者からのお礼
時間が経過したらすべて忘れました。 回答どうもありがとう。
質問者からの補足
(G:G*)はGの位数割るG*の位数の意味です。 素数になるはずです。 それがどうしてという質問です。 よろしく