- 締切済み
- 困ってます
群論の問題です。
群 G に対し,Int G はAut G の正規部分群である事を示せ。 この問題がわかりません。なるべく証明っぽく示していただける助かります。
- RINTYO0111
- お礼率0% (0/1)
- 数学・算数
- 回答数1
- ありがとう数0
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 回答No.1
- tmppassenger
- ベストアンサー率77% (272/352)
丸投げだと回答したくないので、どこまで考えたのか書いてもらいますか? *まず、内部自己同型群 Inn(G)ではありませんか? *その上で、内部自己同型群 Inn(G)とはどういう群で、Aut(G)とはどういう群で、Inn(G)がAut(G)の正規部分群であるとは、何を示せばいいのか分かりますか? *で、上の示さなければいけない事、について、どこまで進んでいますか?
関連するQ&A
- 群論の証明
xy平面における合同変換群O2(R)をGとし、回転部分群Rot(V2(R))をHとする。 また、x軸に関する対称変換をfとする。このとき、G=H∨fHとなることを証明せよ。 とあるのですが証明できません。 ここまで調べてきたことは、 xy平面の回転群Rot(V2(R))は直交変換群O2の正規部分群であること。 正三角形の合同変換群<(12)、(13)>において、回転変換からなる部分群<(123)>は正規部分群であること。 です。 これらをうまく利用して解くのだとは思いますが、いざ文章で表記した時にどう書けばいいかわからないのが現状です。 最悪アドバイスだけでもかまいません。 どうかよろしくお願いします。
- 締切済み
- 数学・算数
- 群論について(部分群)
群Gが正規部分群Nと、部分群Hを持つとします。 このとき、HNはGの部分群となり、NはHNの正規部分群になるみたいなのですが、これは何故なのでしょうか? よろしくお願います。
- 締切済み
- 数学・算数
- 群論「可解群」について
Gを群とする. 「Gの正規部分群Nに対し,NとG/Nがともに可解群ならば,Gもまた可解群である.」 この証明なのですが,途中がわかりません. (∵) G/Nは可解群だから,G/Nの正規列 G/N=G_0/N⊃G_1/N⊃…⊃G_m/N=N/N であって,同型定理より,商群 (G_(i-1)/N)/(G_i/N)≒G_(i-1)/Gi (≒は同型の記号としてください) がアーベル群となるものが存在する. このとき「G_iはG_(i-1)の正規部分群」であることに注意する.…(?) また,Nが可解群だから,Nの正規列 N=G_m⊃G_(m+1)⊃…⊃G_r={e} であって,商群 G_(j-1)/G_j がアーベル群となるものが存在する.このとき, G=G_0⊃G_1⊃…⊃G_m=N⊃G_(m+1)⊃…⊃G_r={e} はGの正規列であって,その商群はアーベル群よりなる. よってGは可解群である. Q.E.D とあったのですが,途中の(?)の部分がわかりません. なぜ「G_iはG_(i-1)の正規部分群」となるのでしょうか? 詳しい方お願いします.
- 締切済み
- 数学・算数
- 群論の交換子群について
(問題) Gを群,HをGの部分群とする.また,[G,G]をGの交換子群とするとき, [G,G]⊂H⇔H\GかつG/Hがアーベル群 となることを示せ. ここで,H\GはHがGの正規部分群であることを表し(記号が環境依存文字だったので\で代用させていただきました),G/HはHによる商群とする. (質問) この証明なのですが,H\Gは証明できました,しかし,G/Hがアーベル群であることが示せません. 手持ちの参考書には,任意のGの元a,bに対して, {a^(-1)b^(-1)ab}H=H・・・(1) であるから, (aH)(bH)=abH=ba{a^(-1)b^(-1)ab}H=baH=(bH)(aH) よって,G/Hはアーベル群である. とあるのですが,(1)が示せません. (1)が示せれば後は簡単なのですが,ここが理解できないので困っています. a^(-1)およびb^(-1)はそれぞれa,bの逆元です. どなたか群論に詳しい方よろしくお願いします.
- 締切済み
- 数学・算数
- この問題が分かりません・・・ 誰かこの問題を割り易
この問題が分かりません・・・ 誰かこの問題を割り易く教えてください。 {1、。。。、5}の2つの異なる数字{i,j}の全体を頂点集合とするグラフGを考える。 ここで α={i,j} (i≠j) と β={k,l} (k≠l) が辺で結ばれている。 ⇔_def {i,j}∩{k,l} = ∅ とする このとき、 (1)Gはピータスングラフに同型であることを示せ。 (2)S_5 (5次対 称 群) ≒{1,2,...,5}の置換群 は自然にAut(G)(Gの自己同型群)の部分群であることを示せ。 (3)実は、S_5≈Aut(G)である。 これを示せ。 {1,2}~{3,4} {3,5} {4,5} 回答宜しくお願いします。
- ベストアンサー
- 数学・算数
質問者からの補足
何も書かずに申し訳ありません。 InnGです。間違えました、すいません。 x,y,g∈ G,σ∈ InnG,τ∈ AutGとして σ(x)=gxg^₋1と (τστ^₋1)(y)=τ(gτ^₋1(y)g^₋1)=τ(g)yτ(g^₋1)から τστ^₋1=fτ(g)∈InnG といった事が言えればよいと考えております。