• ベストアンサー
  • すぐに回答を!

代数学

代数学で分からない問題が・・・。 (1)有限環Z/nZの単元全体(Z/nZ)*の成す群の位数は オイラー関数φ(n)と一致することを示せ。 ただし、φ(n)=#{1≦x≦n|(x,n)=1}とする。 (2)有限環Z/nZが体であるための必要十分条件はnが    素数であることを示せ。 なんですが、わかりません。一つでもいいので教えてください。よろしくお願いしますm(__)m

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

どちらも同じような問題ですね. Z/nZの単位元aとは,ax ≡ 1 (mod n) (合同式ってご存知ですか?)なる数bが存在するaのことですね. この式は ax + ny = 1 というx,yの方程式に整数解があることと同値です. また,環が体であるための必要十分条件は,0以外の全ての元に(積に関する)逆元があること,つまり0以外の全ての元が単元であることです(重要なのでよく確認してください). だからあとは ax + ny = 1 が解を持つための a の条件を考えればよいわけです. それはご自分で考えてみてください.必要条件は公約数に,十分条件はユークリッドの互除法に注目すれば導けます(前者は簡単). (2)は φ(n) = n-1 となるためのnの条件ですね.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございましたm(__)mできればaの条件を教えてほしいのですが・・・。

その他の回答 (1)

  • 回答No.2

#1の者です. 整数xとyが自由に動くとき,ax+nyはaとnの最大公約数で割り切れますね? ということはax+ny=1に解があるとき,aとnの最大公約数は1,すなわちaとnは互いに素です.これが必要条件. あとはこれが十分条件であることを示すのですが,これはユークリッドの互除法からわかります. 詳しくは初等整数論の本を見てください.遠山 啓 著『初等整数論』(日本評論社)なんかが易しい本です.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご丁寧にどうもありがとうございましたm(__)m

関連するQ&A

  • 有限環について

    (1)有限環Z/nZの単元全体(Z/nZ)*の成す群の位数は オイラー関数φ(n)と一致することを示せ。 ただし、φ(n)=#{1≦x≦n|(x,n)=1}とする。 (2)有限環Z/nZが体であるための必要十分条件はnが    素数であることを示せ。 なんですが、わかりません。一つでもいいので教えてください。よろしくお願いしますm(__)m

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 大学の代数学の、群についての問題です。

    大学の代数学の、群についての問題です。 非負整数nを固定する。 nの各約数kに対し、 kZ/nZ?{0,k,2k,3k,・・・,(m-1)k} (ただし、m=n/k)とするとき、 Z/nZの部分群はこれらに限る。 という問題がわかりません。 ・各kに対し、kZ/nZがZ/nZの部分群になること。 ・一意性 を示さなくちゃいけないことはわかるのですが、 代数が苦手なもので、証明方法がピンときません。 どなたかわかる方、よろしくお願いします。

  • 至急お願いします。代数学の問題です。

    (1)(1+240Σ_(n=1,∞)σ3(n)・q^n)^3 - (1-504Σ_(n=1,∞) σ5(n)・q^n)^2 =(1+240X)^3 - (1-504Y)^2 ≡2^4・3^2・(5X+7Y) (mod12^3) これより、5・σ3(n)+7・σ5(n)≡0 (mod4) と≡0 (mod3) を証明せよ。 定義 Γ ⊂ SL2(R) が合同部分群 ⇔ ∃n ∈ N s.t. Γ(n) ⊆ Γ ⊆ SL2(Z) SL2(Z)=Γ(1) (level1) (2)SL2(Z) / Γ(n) = SL2(Z/NZ) を証明せよ。 (3)(2)の位数が(N^3)・Π_(P|n) (1-1/(P^2))となることを証明せよ。 よろしくお願い致します。

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数学の、群の問題を教えて下さい。

    nは正の整数とする。Gは位数nの巡回群とする。この問題では、GはZ/nZに同型であることを示す。 (1)Gの生成元xをとり(つまりG=<x>)、群の準同型定理f:Z→Gをm∈Zに対してf(m)=x^mで定める。このときfは全射であることを示しなさい。またKerf=nZであることを示しなさい。 (2)fに準同型定理を適用して、Z/nZ≃Gを示しなさい。 という問題です。お願いします。

  • 巡回群の生成元について

    お世話になります。よろしくお願いします。 「加法群Z、整数n≧0の時 商群Z/nZは、1を含む剰余類によって生成される位数nの有限巡回群である。(代数系入門 松坂和夫著 p.78)」 とあるのですが、 商群Z/nZの1を含む剰余類は{1,1±n,1±2n,・・・}、 2を含む剰余類は{2,2±n,2±2n,・・・}であり、 1を含む剰余類{1,1±n,1±2n,・・・}を ある整数kでk倍しても2を含む剰余類{2,2±n,2±2n,・・・} にはならないと思うので、 全ての元が生成元aの整数k倍で表される(加法の場合)という巡回群の定義に合わず、 「商群Z/nZは、1を含む剰余類によって生成される」というのがおかしいとおもうのですが、どうでしょうか? どなたか私の考えの間違いをご指摘ください。 よろしくお願いします。

  • 代数系の勉強をしています。

    代数系の勉強をしています。 しかし、まったくわかりません。 3次対称群の位数3の部分群の求め方や、各元で生成される巡回部分群の求め方、(R*,X),(z,+)とは何ですか? 丁寧に教えてください。よろしくお願いします。

  • 代数学の問題なのですが、

    代数学の問題なのですが、 G=〈x〉を位数n<∞の巡回群とする。mは自然数でnはmZに属する元で位数mの部分群がただひとつ存在することを証明せよ。 という問題なのですが教えてください。

  • 次の代数学の真偽を教えてください。(理由も添えて)

    1.位数が素数である有限群は巡回群である。 2.有限アーベル群はすべて巡回群である。 3.巡回群はすべてアーベル群(=可換群)である。 4.Z/4ZとZ/2Z×Z/2Zは共に位数4のアーベル群である。 5.Z/4ZとZ/2Z×Z/2Zとは同型な群である。 6.アーベル群の部分群はすべて正規部分群である。 7.位数が同じ有限群GとG'は同型である。 8.位数が素数である有限群はアーベル群(=可換群)である。