• ベストアンサー
  • 困ってます

約数の個数(正の数と負の数)

私立文系で大学を卒業した社会人ですが、数学をやり直しています。 今、約数の数を求めるところを勉強していて疑問がでてきたので1点教えてください。 ある数Aの約数は、Aを素因数分解して 各素因数の指数に1を足したものを掛けた数に等しいとあるので A=a^x*b^y*C^z Aの約数=(x+1)(y+1)(z+1) となるのだろうと理解しました。 でも例えばAが負の数だった場合はどうなるのでしょうか。 (素数は正の数に限られていた気がします。) そもそも学校の試験では正の数の問題しか出ないのでしょうか。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数1044
  • ありがとう数6

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

それぞれの正の約数は、-1倍すれば、負の約数となるので、 正の約数と負の約数の個数は一致しますよね。 よって 2(x+1)(y+1)(z+1)が正と負の約数を合わせた個数です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご説明ありがとうございます。 正の数と負の数の約数は同じとわかってすっきりしました。 どうもありがとうございました。

関連するQ&A

  • 素因数分解と約数の個数

    こんばんわ。早速ですが、質問に移らさせていただきます。 例えば、36=2の2乗×3の2乗、と素因数分解できます。このように、素数の積にする事により 約数の個数が解ります。この場合、 (指数+1)×(指数+1)が、約数の個数になります。 このような公式を学んだところなのですが、具体的な整数でいろいろと試してみましたが、なぜ、そのような公式になるのかが、検討もつきません。何か、手がかりがあれば、よろしくお願いいたします。

  • 約数と因数の違い(∈N)

    中学校3年で「素因数分解」が教科書に出てきます。 教科書では「因数」「素数」「素因数分解」の順に説明されています。「因数」と小学校で習う「約数」の違いは何ですか? ほとんど同じなのかと思いますが、「因数」の方は1およびもとの数を含まないのかな??と思ったのです。 だって多項式の因数分解の話では(x^2+2x+4)は実数の範囲では「因数分解できない」っていいますよね。 どなたか正確なところをご存知でしたら教えてください。また出典も教えていただければ幸いです。

  • 約数の個数

    私が今使っている参考書の数Aのテーマの一つで「約数の個数」というものがあり、解説として  自然数Nの素因数分解が   N=p^a*q^b*r^c(←pのa乗×qのb乗×rのc乗) であれば、Nの正の約数の個数は    (a+1)(b+1)(c+1)個である この公式の補足説明の中に、  ここでは、正の約数の個数だから上の数となったが、「Nの約数となる整数」というときには、負の約数も考える必要があるから、さらに上の数の2倍で、2(a+1)(b+1)(c+1)である という解説がでていました。  負の約数 という概念がわかりません。どういうもなのでしょうか。よろしくお願いします。 なお、この参考書は、受験用の公式集です。

その他の回答 (2)

  • 回答No.3
  • BookerL
  • ベストアンサー率52% (599/1132)

>でも例えばAが負の数だった場合はどうなるのでしょうか。  そもそも「素因数分解」というのは、自然数に対して行なわれる操作です。 Wikipedia には >素因数分解(そいんすうぶんかい)とは、ある正の整数を素数の積の形で表す方法のことである とありました。

参考URL:
http://ja.wikipedia.org/wiki/素因数分解

共感・感謝の気持ちを伝えよう!

質問者からのお礼

URLとご説明ありがとうございました。 素数は正の数のみなので、素因数分解できないし、おかしいと思っていましたが、URLも見ながらもう一度復習してみます。

  • 回答No.1

約数について考えるときはとりあえず正負の問題は置いといて絶対値で考えていいんじゃないでしょうか。 そうしないと正の数の約数を求めるときでも負の数×負の数の場合 なんかを考慮しなければならなくなってややこしいことになります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 過去問などみても負の数の問題もなさそうなので、 正の数のみで考えて、かつ、負の数が出てきたとしても 約数の数は正の数と同じと理解しました。 ありがとうございました。

関連するQ&A

  • 場合の数、順列 について

    高校数学Aの問題です。 (1)整数700の約数の中で正の数でかつ偶数であるものの個数と、それらの総和を求めなさい。 という問題なのですが、まず約数と出てきた時点で素因数分解をしてみたのですが、その後どのように考えればよいのかわかりません。(答えはありますが、後ほど掲載させてください。) 考え方のポイントを具体的に教えてくださるとうれしいです。どうかよろしくお願いします。

  • 約数の求め方

    現在中二です。 素因数分解を利用して250の約数をすべて選びなさい。 この問題がわかりません。 普通に素因数分解して2×5の3乗 それからどうすればいいのかがわかりません。 分かる方、教えてください。 そして、分かりやすい解説つきでお願いします。

  • 約数の個数

    12個の異なる約数(1と自分自身を含む)をもつ最も小さい整数は、選択肢のどの範囲内にあるか。 45<=X<55,55<=X<65,65<=X<75,75<=X<85,85<=X<90 求めるものをnとする。 素因数因数分解してn=2^a*3^bとなる場合を考える。 (a,b)=(5,1)のとき n=96 (a,b)=(3,2)のとき n=72 これより75<=X<85の範囲にある 以上が私の考えです。nは素数だと12個の異なる約数ができないし 2または3だけの要素からなるnは選択肢の範囲を超えてしまいます。 そこでn=2^a*3^bという形で表されると考えて解きました。 自信はないので間違っていると思われます。 分かる方宜しくお願いします!

  • 素因数分解の一意性を保たせるため?

    「素数」とは「1とその数自身の他に約数を持たない数」と習いました。 1は素数ではないということですが、これは「素因数分解の一意性を保たせるため」と知りました。 これはどういうことでしょうか? 中学生でも解るようにご説明下さい。 (それとも中学生に解るように、は無理でしょうか……?) 宜しくお願いします。

  • 集合・場合の数

    ニュースタンダード48 1800の正の約数(1を含む)は、全部で(ア)個ある。 また、それらの約数の総和は(イ)である。 解答 (ア)36 (イ)6045 p,q,rを素数とおいて、素因数分解をするときで考えればいいのですか? 途中式を含めて解説をお願いします><

  • 約数の総和

    正の整数AがPのk乗qのl乗rのm乗と素因数分解されるとき、Aの正の約数の総和は (1+P+・・・+Pのk乗)(1+q+・・・qのl乗)(1+r+・・・+rのm乗) と表されるのはなぜですか? 総和なので ()+()+()ではないかと思いました。

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • 偶数、奇数、倍数、約数、素数について教えて下さい。

    小学校で偶数や倍数などについて習ったのですが、 中学校になって、負の数を習ったり、文字式を習ったり、整数の問題をやっているうちに、 定義がいまいち分からなくなってしまいました。(現役中学生です。) ・偶数、奇数、倍数、約数それぞれにゼロは含まれるのか。 ・素数、偶数、奇数、倍数、約数、に負の数は含まれるのか。  これは、例えば、 -1は素数になるのか、 -2は偶数なのか、もしくは、そもそも負の数に偶数と言うものは無いのか(奇数も同様に)、 -12の約数や倍数はあるのか、もしくは、そもそも負の数に約数・倍数がないのか、 あるとしたら、  3の倍数に負の数や、-3の倍数に正の数があるか、  -6と-9の公約数、-8と12の公約数はあるか、 などなどです。 検索してもよく分からないのですが、教えてもらえないでしょうか。

  • 中3 数学

    素数、因数、約数についての質問です。 12=1×12と表すとき 1と12は12の因数と言うことは正しいのでしょうか? 素数分解の過程で1を因数とは見なさないため、因数と約数の違いを説明する際に 言葉に詰まってしまいました。 因数とは 数や式が積の形で表されるときの ひとつのひとつの数や式のことを言うのだから 12=1×12のとき1は因数であると言うことに間違いはないでしょうか? 90の約数を素因数分解を使って求めよ、という類の問題の本質を分かりやすく伝えるにはどうすれば良いでしょうか?

  • 素因数分解について

     ものすごく大きな素数二つを掛け合わせた数を素因数分解することは難しい、というようなことを本で読みました。 これって暗号を作ることにも利用されているみたいですが、どうしてこの数を素因数分解することが難しいのでしょうか?