• 締切済み
  • 困ってます

約数の求め方

現在中二です。 素因数分解を利用して250の約数をすべて選びなさい。 この問題がわかりません。 普通に素因数分解して2×5の3乗 それからどうすればいいのかがわかりません。 分かる方、教えてください。 そして、分かりやすい解説つきでお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数476
  • ありがとう数4

みんなの回答

  • 回答No.4
noname#200786
noname#200786

No.2です。 もし、やってたらツイッターにでも、と。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません。 ツイッターってなんでしょうか。

関連するQ&A

  • 約数の総和

    正の整数AがPのk乗qのl乗rのm乗と素因数分解されるとき、Aの正の約数の総和は (1+P+・・・+Pのk乗)(1+q+・・・qのl乗)(1+r+・・・+rのm乗) と表されるのはなぜですか? 総和なので ()+()+()ではないかと思いました。

  • 約数の個数

    私が今使っている参考書の数Aのテーマの一つで「約数の個数」というものがあり、解説として  自然数Nの素因数分解が   N=p^a*q^b*r^c(←pのa乗×qのb乗×rのc乗) であれば、Nの正の約数の個数は    (a+1)(b+1)(c+1)個である この公式の補足説明の中に、  ここでは、正の約数の個数だから上の数となったが、「Nの約数となる整数」というときには、負の約数も考える必要があるから、さらに上の数の2倍で、2(a+1)(b+1)(c+1)である という解説がでていました。  負の約数 という概念がわかりません。どういうもなのでしょうか。よろしくお願いします。 なお、この参考書は、受験用の公式集です。

  • 約数と因数の違い(∈N)

    中学校3年で「素因数分解」が教科書に出てきます。 教科書では「因数」「素数」「素因数分解」の順に説明されています。「因数」と小学校で習う「約数」の違いは何ですか? ほとんど同じなのかと思いますが、「因数」の方は1およびもとの数を含まないのかな??と思ったのです。 だって多項式の因数分解の話では(x^2+2x+4)は実数の範囲では「因数分解できない」っていいますよね。 どなたか正確なところをご存知でしたら教えてください。また出典も教えていただければ幸いです。

  • 回答No.3
  • birth11
  • ベストアンサー率37% (82/221)

250 = 2 x 5 の 3乗 1つ目の約数…1 因数に 2を含む約数…2 ,2x5 , 2 x 5 の 2乗 , 2 x 5 の 3乗 因数に 5を含む約数で上記にない約数…5 , 5 の 2乗 , 5 の 3乗 2 と 5 以外に素因数がないので約数はここまでです。 以上。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

  • 回答No.2
noname#200786
noname#200786

大変な紙が必要ですが、 250・・・1、                              、250 つづいて250は偶数なので 1,2、                              、125、250 1、2、5、                          50,125,250 1、2、5、10、                    25,50,125,250 250の約数は1,2,5,10,25,50,125,250、です 素因数分解がよくわかりませんが、式に当てはめて考えてください <補足> 教科書を見たほうが早いのでは? 画像はコピーして何なりと使ってください

共感・感謝の気持ちを伝えよう!

質問者からのお礼

素因数分解は、自然数を素数の積として表すことですよ。 この画像は、何に使うのでしょうか。

  • 回答No.1
  • bin-chan
  • ベストアンサー率33% (1403/4213)

> 普通に素因数分解して2×5の3乗 2のa乗×5のb乗と解釈すると a と b は以下の範囲。 0 ≦ a ≦ 1 (0、1)の2通り 0 ≦ b ≦ 3 (0、1、2、3)の4通り 組み合わせは2×4の8通り 2の0乗×5の0乗=1×1=1 2の0乗×5の1乗=1×5=5 2の0乗×5の2乗=1×25=25 2の0乗×5の3乗=1×125=125 2の1乗×5の0乗=2×1=2 2の1乗×5の1乗=2×5=10 2の1乗×5の2乗=2×25=50 2の1乗×5の3乗=2×125=250

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

関連するQ&A

  • 数A(さっきの問題と同様、先ほどのはしめきります

    数Aの問題 1800の正の約数(1を含む)は、全部で〔〕個ある 〔〕の中に数字をいれよ まず1800を素因数分解して、2^3×3^2×5^2 2を0~3個の内何回かけるか→4通り 3を0~2個の内何回かけるか→3通り 5を0~2個の内何回かけるか→3通り 4*3*3=36個 と解説にはかいているのですがなぜ、個数をしらべるために掛け算をするんですか 普通、足し算ではないんでしょうか。 後、2を0~3個の内何回かけるか→4通り 3を0~2個の内何回かけるか→3通り 5を0~2個の内何回かけるか→3通り はわかるのですが、2も0で3も0で5も0だと× ならなぜ、2^2のときは、3^2(悪魔で例)などとしないんでしょうか そもそもなぜ素因数分解して得たもので約数がわかるのでしょうか 根本的なおころがわからないんで、最初から丁寧に おしえていただきたいです

  • 素因数分解と約数の個数

    こんばんわ。早速ですが、質問に移らさせていただきます。 例えば、36=2の2乗×3の2乗、と素因数分解できます。このように、素数の積にする事により 約数の個数が解ります。この場合、 (指数+1)×(指数+1)が、約数の個数になります。 このような公式を学んだところなのですが、具体的な整数でいろいろと試してみましたが、なぜ、そのような公式になるのかが、検討もつきません。何か、手がかりがあれば、よろしくお願いいたします。

  • 約数の個数(正の数と負の数)

    私立文系で大学を卒業した社会人ですが、数学をやり直しています。 今、約数の数を求めるところを勉強していて疑問がでてきたので1点教えてください。 ある数Aの約数は、Aを素因数分解して 各素因数の指数に1を足したものを掛けた数に等しいとあるので A=a^x*b^y*C^z Aの約数=(x+1)(y+1)(z+1) となるのだろうと理解しました。 でも例えばAが負の数だった場合はどうなるのでしょうか。 (素数は正の数に限られていた気がします。) そもそも学校の試験では正の数の問題しか出ないのでしょうか。 よろしくお願いします。

  • 正の約数の和

    今、数学の問題集を解いています。 その中の問題で「次の2つの自然数の正の公約数の個数を求めよ。」という問題があるのですが、その中に「(2)1512と7056」という問題があり、それぞれを素因数分解するところまではわかったのですが、そこから先が解説を見ても解説がおおまかでよくわかりません。 ちなみに答えは24個だそうです。 どなたか分かりやすく解説してくださいませんか? よろしくお願いします。

  • 素因数分解の問題教えて下さい。

    ある整数Nを素因数分解するとN=2^10×3^15×5^10×7^2となった。 この整数Nの正の約数のうち1の位が1であるものは何個あるか求めよ。 という問題をいろいろ考えたり周りの人にも聞いたのですが,どのようにしたらよいかわかりません。 答えは11個らしいのですが、詳しい解説を教えていただけませんか。 よろしくお願いします。

  • 集合・場合の数

    ニュースタンダード48 1800の正の約数(1を含む)は、全部で(ア)個ある。 また、それらの約数の総和は(イ)である。 解答 (ア)36 (イ)6045 p,q,rを素数とおいて、素因数分解をするときで考えればいいのですか? 途中式を含めて解説をお願いします><

  • 数Aの問題

    1800の正の約数(1を含む)は、全部で〔〕個ある 〔〕の中に数字をいれよ まず1800を素因数分解して、2^3×3^2×5^2 2を0~3個の内何回かけるか→4通り 3を0~2個の内何回かけるか→3通り 5を0~2個の内何回かけるか→3通り 4*3*3=36個 と解説にはかいているのですがなぜ、個数をしらべるために掛け算をするんですか 普通、足し算ではないんでしょうか。 後、2を0~3個の内何回かけるか→4通り 3を0~2個の内何回かけるか→3通り 5を0~2個の内何回かけるか→3通り はわかるのですが、2も0で3も0で5も0だと× ならなぜ、2^2のときは、3^2(悪魔で例)などとしないんでしょうか

  • 小5算数 整数の性質

    どの程度まで扱うべきだと思いますか。以下私案: 1 約数と倍数:偶数と奇数,約数と倍数の意味,倍数の見分け方 2 素数と素因数分解:素数,素因数分解 3 最大公約数とその利用:2数及び3数の最大公約数とその利用 4 最小公倍数とその利用:2数及び3数の最小公倍数とその利用 5 2つの整数とその最大公約数・最小公倍数との関係

  • 素因数分解をこの問題でどう使うのか??

    問題 「a、b、cは自然数とする。 2^3a×3^2b×5^cで表せる6桁の数があり、その中央の4桁は0736であることがわかっているとき、a,b,cの値を求めよ。」 これは中学生の問題です。私は家庭教師をしているのですが、情けないことにこの問題がわかりません。この問題のテーマは「素因数分解の利用」ということなのですが、どう素因数分解を利用するのかわかりません。 ~私の解法(素因数分解の利用なし)~ 3^2b=9の倍数なので、9の倍数の性質と2×5=10を利用して6桁の数が「207360」とわかったのですが、素因数分解を利用していないので、この解法ではないと思います。そもそも9の倍数の性質を知らないと解けない問題自体見たことがありません。 素因数分解を利用する解法がわかる方はぜひ教えて下さい。お願いします。

  • 中学数学を教えて下さい

    今、問題集を解いているのですが解説を読んでも疑問が残ってしまっています。もしかしたらすごく基本的な部分かもしれないのですが、考えても考えてもわかりません。二問あるのですが、どちらかだけでもいいのでお力添えいただければ嬉しいです。 1.ある素数pに72を加えた数を素因数分解すると13×q(ただしqは素数)となる。   またpをこのqで割ると5余るという。   このとき、pの値で考えられるものをすべて答えなさい。 (解説)  p+72=13×qより、p=13q-72  pをqで割った時の商をaとすると、  p=aq+5  よって、13q-72=aq+5  (13-a)q=77                77=7×11、qは素数だからqは7か11   q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  19,71は素数だから、問題に適している。     この解説の  (13-a)q=77   77=7×11、qは素数だからqは7か11  q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  の部分なのですが、  (1)77が11×7なのは分かるのですが、なぜそのどちらかがqの値になるのか  (2)(13-a)は無視してしまっていいのか  (3)7と11を当てはめて計算するとき、aはどこにいってしまっているのか  など、全体的によくわかっていません。(1)~(3)を無視してもいいので、回答頂けると嬉しいです。 2,自然数nに対して、nの約数の個数をf(n)で表す。例えば、f(7)=2、   f(8)=4,f(9)=3である。   自然数aについて、f(a)=6のとき、f(aの3乗)の値をすべて求めなさい。  解説  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  a=pxpxpxpxpのとき、axaxa=pxpxpxpxpxpxpxpxpxpxpxpxpxpxp(pの15乗)  になるから、  f(axaxa)=15+1=16  a=pqxqのとき、axaxa=pxpxpxqxqxqxqxqxq となるから  f(axaxa)=(3+1)×(6+1)=28  この解説の  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  の部分なのですが、なぜこうなるのかがわからなく、結果的に全部よくわかりません。  頭が悪くて申し訳ないのですが、解説をお願い致します。