- ベストアンサー
微分方程式
微分方程式の特殊解のおき方がわかりません y"+y=secx 同時微分方程式を解くと y=c1cosx+c2sinx となるところまでできるのですが ここから y(x)=Acosx+Bsinx とおいて計算してもうまくいきません お願いします
- みんなの回答 (6)
- 専門家の回答
関連するQ&A
- 微分方程式の問題ですが・・・
y´´-3y´+y=e^x cosx という微分方程式をy=e^x (Acosx+Bsinx)の形で求めよという問題ですが、同次方程式の解と特殊解の解を求めればいいと思うのですが、 特性方程式λ^2 -3λ+1=0で解きます。解の公式で解くとλ=3±√5/2という解がでたのですがあっているのでしょうか?もしあっているとしたら基本解は実数解になるのですが、y=e^x (Acosx+Bsinx)の形で求めよという問ですので基本階は共役複素数解にならないといけないですよね?僕はどこを間違えているのでしょうか?教えてください
- ベストアンサー
- 数学・算数
- 微分方程式の解き方を教えてください
y''+y=1/cosx という微分方程式の同次方程式y''+y=0の一般解は y=Acosx+Bsinx (A,Bは任意定数) ですが、特殊解の解き方が分かりません。 もし(右辺)=cosxなら逆演算子を使ってすぐに解けるのですが、(右辺)=1/cosxとなると分かりません。ご存知の方、お手数ですが教えてください。よろしくお願いします。 ※ y''=d^2y/dx^2
- ベストアンサー
- 数学・算数
- 2階の非同時線形微分方程式の特殊解
2階非同時線形微分方程式を解いているのですが、わからない点があるため教えてください。一般解はわかるのですが、特殊解が答と一致しません。どこが間違っているか教えてください。 問1 y''+y'-6y=10e^(2x) 特殊解を求めると y0=ae^(2x)とおくと y0'=2ae^(2x) y0''=4ae^(2x) よって、4ae^(2x)+2ae^(2x)-6(ae^(2x))=10e^(2x) となり、左辺が0になってしまうのですが、どこを直せばいいでしょうか。 答では2xe^2xが特殊解になっています。 問2 y''+y'=x+2 特殊解を求めると y0=ax+b とおくと y0'=a y0''=0 よって、a=x+2 となり、y0=x^2+2xとなったのですが、答えではy0=(1/2)x^2+xとなっています。どこが間違えているか教えてください。 問3 y''+y=5e^xcosx 特殊解を求めると、 y0=e^x(acos+bsinx) y0'=e^x(-asinx+bcosx) y0''=e^x(-acosx-bsinx) よって、 e^x(-acosx-bsinx)+e^x(acos+bsinx)=5e^xcosx となり、問1同様左辺が0になってしまいます。 答では特殊解はe^x(cosx+2sinx)となっています。 問題が多くて申し訳ありませんが、回答お願いします。
- ベストアンサー
- 数学・算数
- 1階の線形微分方程式
1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx
- ベストアンサー
- 数学・算数
- 微分方程式の問題がわからなくて困っています
微分方程式を勉強しているのですが、購入した本が略解しか載っていないため困っています。 x√(1-y^2) + y'secx = 0 上の式の微分方程式が解けません。 答えはsin^-1 y = c - xsinx - cosx になるのですが、どのように解けば答えを出せるのかわかりません。 詳しい方がいましたら回答よろしくお願いします。
- 締切済み
- 数学・算数
- 4階の微分方程式の解き方を教えてください!
問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません おき方と解法を教えていただきたいです
- ベストアンサー
- 数学・算数
- 微分方程式の一般解
微分方程式の一般解を求める問題なのですが、どうしてもよく分かりません。 y'6+4y'2=40x^3 (ここで'○は微分の回数を示すとします。また、以下ではD=d/dxのことです) 同時方程式(D^6+4D^2)y=D^2(D^4+4)y=D^2{(D^2+2)^2-4D^2}y=D^2(D^2+2+2D)(D^2+2-2D)y=D^2{(D+1)^2+1}{(D-1)^2+1}y=0 の基本解は{1、x、e^(-x)cosx、e^(-x)sinx、e^xcosx、e^xsinx} 次に特殊解Y(x)を求める。 非同次項R(x)=40x^3は同時方程式40D^4y=0の解だから、 特殊解Y(x)の式Yは同時方程式 40D^4・D^2{(D+1)^2+1}{(D-1)^2+1}y=0の解である。 この基本解{1、x、x^2、x^3、x^4、x^5、e^(-x)cosx、e^(-x)sinx、e^xcosx、e^xsinx}から与式の基本解を除いたx^2、x^3、x^4、x^5の一次結合として Y(x)=Ax^2+Bx^+Cx^4+Dx^5とおく。 与式の左辺に代入… と続いていくのですが、どうにもしっくりきません。 答えも y=(20/3)x^3+c1+c2x+e^(x/√2){c3cos(x/√2)+c4sin(x/√2)}+e^(-x/√2){c5cos(x/√2)+c6sin(x/√2)} となり、私の解からでは到底結びつくとは思えないです。 気になるのが 「非同次項R(x)=40x^3は同時方程式40D^4y=0の解だから」 としていますが、本当にこれで良いのか自信もありません。 もし間違えていたら解説をお願いします。 また、他に違うというようなところがあったら指摘してください。 回答、よろしくお願いします。
- ベストアンサー
- 数学・算数
- 富士通FMVのF52WW MA6501521の画面が黒くなってしまいます。どうしたら解決できるでしょうか?
- F52WW MA6501521の画面が真っ黒になるトラブルが発生しています。解決方法を教えてください。
- 富士通FMVのF52WW MA6501521の画面が暗くなり、何も表示されなくなりました。どのように対処すればいいですか?