• ベストアンサー
  • 困ってます

誘電体球の分極電荷密度について

半径aの誘電体球(線形常誘電体 P = ε0 χ E)の中心に電荷 q (>0)をおいた。この場合の電気分極を求め、分極電荷密度を求めよ。 という問題なんですが ρp = -∇・P=-∇・ε0 χ E=0という誤った答えになってしまいます。 よろしければどこが間違っているのかと詳しい計算式を教えてください。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数2729
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(1)  ρp = -∇・P=-∇・ε0 χ E は分極電荷の【体積密度】と与える式です. で,ゼロになるというわけですが, これは誘電体中(中心を除く)および誘電体外側(つまり真空中)では間違っていません. ただし,誘電体中心と誘電体表面ではちょっと難しいことになります. 誘電体中心と誘電体表面では電場の E が不連続にジャンプしますから, そこでの微分(∇)をどうするかが問題です. δ関数をご存知なら,それを使う. あるいは積分形にしてガウスの法則を使う,というのがよろしいでしょう. 今の問題では,分極電荷は中心と誘電体表面にのみ存在します. 前者は1点のみ,後者は面のみ,ですから, 無理に体積密度というなら無限大になってしまいます.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

この場合はρp = -∇・P=-∇・ε0 χ Eの式は使わないほうがいいんですね。詳しい説明ありがとうございます。助かりました。

関連するQ&A

  • 分極電荷密度について

    分極電荷密度を求めるときに使う式は -σ=-p =ε0(εr-1)E|r=a なのですが、問題でもし真空でなくて誘電体中側の導体表面に表れる分極電荷密度を求めるときは、どうしたらいいですか?

  • 誘電体中の導体、分極電荷などについて。

    【導体が誘電率εの誘電体に囲まれているとき、真電荷の面密度ρとすると、 1:導体表面の前方の電場 2:分極電荷の面密度 はいくらか】 という問題があるのですが、真電荷というのは、導体の表面にある電荷のことですよね。その電荷に引き寄せられてマイナスの電荷が全体として導体の方を向いている、そのマイナス分を分極電荷という、と思います。(そういう理解です。) 質問なのですが、この「2」の出し方が分かりません。「1」は導体表面に微小面積dsをとって、電荷ρdsが作る電場…という具合に解いていくと思うのですが、「2」の方はよく分かりせん。解答を見ると、分極による表面密度をpとすると EdS = 1/ε0(ρdS+pdS) と式を立てているのですが…。なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。 導体の表面の電荷と分極電荷と電場の関係がよく分かりません。 よろしくお願いします。

  • 電荷を与えられた誘電体球について

    電荷を与えられた誘電体球について こんにちは、 手元にある書物「電磁気学演習」 http://www.kyoritsu-pub.co.jp/sankosyo/contents/03022-2.html)のp.77を見ますと 11.1 全電荷Qで一様に帯電された半径a、誘電率εの誘電体球の内、外の電位を求めよ。 とあります。下記の基本的なことを教えてください。 (1) 誘電体球には、プラスかマイナスのどちらかの電荷しか、溜まっていないのでしょうね?それとも、誘電体球は、全体で見れば、中性なのでしょか? http://www.moge.org/okabe/temp/elemag/node30.html (2) 誘電体球に電荷を蓄積させる方法は、例えば下記HPの方法でしょうか? (3) 下記のようなバンデグラフの頭は誘電体球とは呼ばないのでしょうか? http://www.geocities.jp/jun930/ele/vandegraaf.html (4) 誘電体球に電荷が溜まっている状態は、スポンジ(誘電体球)が水(電荷)を含んだ状態と似たようなものと考えて良いのでしょうか? (5) 誘電体球と導体球の違いは何でしょうか?

  • 電荷面密度

    誘電率がε1の誘電体のなかに 半径aの導体球が電荷Qを持っているとき。 中心からrの距離での誘電体内での電束密度D の大きさがその距離での電界Eを用いて、 D=ε1・E となる。ところまではわかるのですが、 次に、導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので、導体表面上の電荷面密度は? というところの電荷面密度が求められません。 その前に「導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので」という文章がどういう意味なのか わかりません。 どなたかわかる方いらっしゃいましたらお願いします。

  • 分極P 誘電体 電界

    (問)強さPで一様に分極した誘電体から穴をくりぬいた時、内面に現れた分極電荷により穴の中央の点に生ずる電界の強さEを求めよ。 ※穴のくりぬき方;半径rの球からトンネルを掘るように中心を対称にして穴をくりぬく。 鉛直上向きを分極ベクトルPの向きとして、球に垂直な成分はPcosθと表現できるとする。 この問題を是非是非解いてください!!!!

  • 誘電体上の電荷密度

    物質表面の電荷密度は表面電場を誘電率で割ることで得ることができます。 導電体の場合には、電気力線が表面に対して垂直なので計算は簡単ですが http://www.f-denshi.com/000TokiwaJPN/32denjk/fig/1602.gif この絵に描かれてあるように、誘電体の場合には電気力線が90°以外の角度でも 入ることができます。 となると、誘電体上の電荷密度を計算するためには 表面に対して90°ではなく電気力線に沿った角度での電場、 すなわち電場の長さを誘電率で割る必要があるのでしょうか?

  • 誘電体の中に誘電体がある場合について

    比誘電率ε_2の大きな誘電体の中に比誘電率ε_1の誘電体の球(半径R)が埋め込まれていて,全体に対して外から+x方向を向いた一様な電場E_0がかかっている.このときの誘電体球の内部の電場を求めよう. 2種類の誘電体の内部での電荷密度はゼロなので,各誘電体の内部での電位(r)はラプラス方程式△V(r)=0の解である.境界面に分極電荷が現れるが,分極電荷の作る電場は遠方ではゼロになる.そこで,前節の例を参考にすると,電位はV(r)=-(E_0)rcosθ+acosθ/r^2 (r>R) a:定数 , V(r)=-E_1rcosθ (r<R)という形をしていることがわかる.(ここでは電位がこのようになるとしておいてください,この式が成立するというのはわかります) cosθ/r^2という形の項は球の中心で無限大になるので,誘電体球の内部の解には含まれていない.したがって,誘電体球の内部の電場E_1は外部からかけた電場E_0に平行で一様であることがわかる. まず一つ目の質問なのですが,なぜここでE_1とE_0が平行で一様であるということがわかるのでしょうか? 式が成立するのはわかりますが,なぜこの事実が言えるのかということがわかりません. また本の続きですが,2種類の誘電体の境界面(r=R)に分極電荷が存在するので,境界面で電場は不連続であるが,電位は連続なのでa=(E_0-E_1)R^3という関係が得られる. 2種類の誘電体の境界面で電束密度の外向きの法線方向成分D_n=(ε_r)(ε_0)E_n=-(ε_r)(ε_0)∂V/∂r・・・(1)は連続なので(ε_1)E_1=ε_2(3E_0-2E_1)・・・(2)という式が導かれる. E=-gradVというのはわかるのですが,なぜE_n=-∂V/∂rというようにr方向のみに依存しているということがわかるのですか? この場合,電場はθ方向などにも依存するのでは・・・. また,(1)が成り立つと認めた場合に(2)をどのようにして導いたのかがよくわかりません. 分かる方がいらっしゃいましたら教えていただけると本当に助かります. よろしくお願いいたします.

  • 分極の大きさPの求め方

    分極の大きさPは P = εo(εr - 1)E という式で計算できるようですが 内半径a,外半径bの誘電体球殻があり、その中心に正の電荷がある場合、 rの範囲によってEは変化しますが、Pの式自体はこの式で その範囲のPを求めたければその範囲でのEの式を代入するだけでいいんでしょうか? 誘電体の部分と真空の部分でPの式が変化したりすることはあるんでしょうか? 教えてください。

  • 分極電荷の面積密度を求める問題です

    2枚の平行導体板間に、厚みd1、誘電率ε1および厚みd2、誘電率ε2の2枚の誘電体板をサンドイッチ状に重ねて挿入した。 導体板の電位差をVに保ったとき、両誘電体が接する境界面上に現れる分極電荷の面積密度σpを求めてください。 解:σp={(ε1-ε2)/(ε1d2+ε2d1}ε0V 考えては見たんですが、さっぱり分からないので教えてください。お願いします。

  • 電磁気(点電荷から電荷面密度を求める)

    接地された半径aの導体球の中心から距離bの点Qに、点電荷qを置く このとき、 イ)球面上の点Pの電荷面密度を求めよ (∠POQ=θ) ロ)球面上に誘導される全電荷はどれだけか ハ)点電荷が受ける力を求めよ という問題がなのですが、イの時点で見当がつかず困っています。 面電荷密度は全電荷を表面積で割るという求め方しか習っていません…。 この場合鏡像電荷が生じて、実際のqは考えず、導体球内で発生した鏡像電荷で考えると思うのですが、そこからの求め方がわかりません まずその時点で間違ってるかもしれませんが・・・ ご教授よろしくお願いします。