• 締切済み
  • すぐに回答を!

電荷面密度

誘電率がε1の誘電体のなかに 半径aの導体球が電荷Qを持っているとき。 中心からrの距離での誘電体内での電束密度D の大きさがその距離での電界Eを用いて、 D=ε1・E となる。ところまではわかるのですが、 次に、導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので、導体表面上の電荷面密度は? というところの電荷面密度が求められません。 その前に「導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので」という文章がどういう意味なのか わかりません。 どなたかわかる方いらっしゃいましたらお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数3395
  • ありがとう数3

みんなの回答

  • 回答No.2

>あと、やっぱり、問題に出てくる「導体表面の電荷面密度は導体表面 >上の電束密度の法線成分に等しいので」 >という文章が電束密度の方向と、電荷面密度が互いに垂直? >であるとしか読み取れないのですが、それでよろしいのですか? >なんだかそこがまだ、しっくりきていません。 面の方向というときは、面の法線方向のことを言います。 面に沿う方向と法線方向とは直交しています。 紛らわしいですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!! とても分かりやすくよくりかい出来ました!

  • 回答No.1

(1)導体球の中心を原点とする極座標系を採用しましょう。 r>a のとき、電荷分布の対称性から、電界Eはrだけの関数であること 、また、電界の回転(rot)は零であるから、r方向であることが分かります。 そこで、半径rの球面をガウス面として、ガウスの法則を使うと、 ∫[半径rの球面上]E(r)dS=E(r)4πr^2=Q/(ε1) よって、E=Q/{4π(ε1)r^2} D=(ε1)E=Q/{4πr^2} 導体表面では、r=a、このとき、D=Q/{4πa^2} 右辺は、球導体面上の面電荷密度になります。 確かに、電束密度は面電荷密度に等しくなっていますね。 電界Eの方向は、r方向であるから、電束密度Dもr方向ベクトル。 すなわち、球面上では、球面の法線方向であることがわかりますね。 (2)これらは、もっと一般に成り立ちます。導体表面の電界、電束は 導体表面の法線方向になります。 導体表面の付近で円筒形のガウス面を考えましょう。 円筒の軸を導体面の法線方向に取ります。円筒の上半分は導体の外、 下半分が導体内部にあるものとしましょう。 導体では、電位がどこも同じですから、導体の面に沿う方向の 電界成分は0、電束密度も0です。従って、電界、電束密度とも、 法線方向となります。 ここで、ガウスの法則を適用しましょう。 ガウス面において、積分の値が0でないのは、導体の外の円筒の上の面 です。円筒の上の円の面積をSとしますと、積分は、  D・S=σ・S となります。σは面電荷密度です。Sは十分小さいとしています。 ゆえに、D=σ このように、導体表面では、そこの面電荷密度と電束密度の大きさは 一致します。また、方向は面の法線方向です。 以上ですが、分かりましたか。

共感・感謝の気持ちを伝えよう!

質問者からの補足

本当に丁寧な回答どうもありがとうございます! 導体表面の電荷面密度を求めるためには 導体表面における電束密度を求めればよいということが わかりました! ありがとうございます! あと、やっぱり、問題に出てくる「導体表面の電荷面密度は導体表面上の電束密度の法線成分に等しいので」 という文章が電束密度の方向と、電荷面密度が互いに垂直? であるとしか読み取れないのですが、それでよろしいのですか? なんだかそこがまだ、しっくりきていません。

関連するQ&A

  • 真電荷を持つ境界での境界条件

    誘電率がそれぞれε1、ε2の異なる2つの誘電体の境界面に面密度σの真電荷が存在する場合を考える。 境界における電界及び電束密度の接続の条件(境界条件)を求めよ。 という問題です。 まず、電束密度の法線方向については、境界を含む微小円筒表面に対してガウスの法則を適用して (D1-D2)・n=0 (D1,D2は電束密度、nは境界面法線単位ベクトルです) を得ました また、上の式から (ε1E1 - ε2E2)・n = 0 (E1,E2は電場です) を得ました 次に電場の接線方向について、境界を含む長方形の閉曲線を考え、境界面に垂直な辺を無限小にとり、この辺からの寄与を無視することで、rotE=0より (E1-E2)・t=0 (E1,E2は電場、tは境界面接線方向単位ベクトルです) また、上の式から (D1/ε1 - D2/ε2)・t=0 を得ました ここから境界条件を求めるのだと思うのですが、どうやったらいいか分かりません。 何を示せば境界条件となるのかがわからないのです。 よろしくお願いします。

  • 電位と電荷密度

    球座標系で表される電位φ φ(r)=(q/4πε0)×{exp(-r/a)}/r がある.ただし,rは動径,ε0は真空誘電率,qは電荷,aは基準長さである. (1)この電位を作る電荷密度分布ρ(r)をr>0の範囲で求めよ. という問題があります.これは,φをrで微分して電界Eを求め,そこからρを求めるという方法であっていますでしょうか?私の計算ではρ=(3q/4π)×{exp(-r/a)}/r^2×(1/r+1/a)となりました. (2)(1)で得たρを,r = 0を除く全空間で積分し,総電荷Qを求めよ.という問題では,積分範囲は何から何までにすればいいのでしょうか? また,(3)r = ∞の球表面における電束を求めることにより,原点r = 0にどのような電荷があるか求めよ.という問題も,どのように考えたらいいのか全くわからなくて困っています.よろしくお願いします.

  • 分極電荷密度について

    分極電荷密度を求めるときに使う式は -σ=-p =ε0(εr-1)E|r=a なのですが、問題でもし真空でなくて誘電体中側の導体表面に表れる分極電荷密度を求めるときは、どうしたらいいですか?

  • 並行板コンデンサの誘電体の挿入による電荷密度との関わりについて

    はじめまして。 前に質問したものなのですが違う点で疑問が出てきたので質問させてください左上の図の様に何もない時の電界をEとしても誘電体をフルに間隔に満たした時はdもVも変わらないので同じEという事は分かりましたが。 前回の質問http://oshiete1.goo.ne.jp/qa5365506.html 隙間をあいた状態で挿入いた場合(下図)はどうでしょうか? 左の様に元の電界と同じ電界Eが誘電体内に出来て、電荷密度が大きくなるのか、それとも、右の様に誘電体外に元の電界Eが生じて、電荷密度の変化はなく、誘電体内の電界は小さくなるのでしょうか? またその理由を教えてもらいたいです。 回答よろしくお願いします。

  • 電磁気(点電荷から電荷面密度を求める)

    接地された半径aの導体球の中心から距離bの点Qに、点電荷qを置く このとき、 イ)球面上の点Pの電荷面密度を求めよ (∠POQ=θ) ロ)球面上に誘導される全電荷はどれだけか ハ)点電荷が受ける力を求めよ という問題がなのですが、イの時点で見当がつかず困っています。 面電荷密度は全電荷を表面積で割るという求め方しか習っていません…。 この場合鏡像電荷が生じて、実際のqは考えず、導体球内で発生した鏡像電荷で考えると思うのですが、そこからの求め方がわかりません まずその時点で間違ってるかもしれませんが・・・ ご教授よろしくお願いします。

  • 電磁気学について

    電磁気の問題が分かりません どなたか教えていただけませんか? 半径2.0cmの帯電した導体球が真空中にある。 導体球の表面は比誘電率が2.0の厚さ1.0cmの伝導体で覆われている。 導体球の中心から距離10cmの位置の電界強度は1.0*10^2V/mであった。 解答に当たっては単位も明記すること。また、真空の誘電率はε0[F/m]としてよい 1 導体表面の面電荷密度を求めよ 2 導体表面の単位面積あたりに働く力の大きさを求めよ 3 導体の電位を求めよ 4 誘電体の外表面の分極面電荷密度を求めよ 5 静電誘導を求めよ という問題です。 1は E=δ/ε0 に代入して    δ=200ε0 2は F=(1/2ε0)*δ^2 に代入して2*10^4 3 以降が自信がないという状況です どなたか分かる方がございましたら 教えていただけませんか?? よろしくお願いいたします!!!

  • 導体球の表面の電荷密度

    直径100mmの導体球に5×10^-7[C]の電荷が与えられている。 この時、表面の電荷密度はどうもとめるのですか?そもそも表面の電荷密度ってどういうことかわかりません。電荷は導体に一様に分布しないんですか?

  • 誘電体中の導体、分極電荷などについて。

    【導体が誘電率εの誘電体に囲まれているとき、真電荷の面密度ρとすると、 1:導体表面の前方の電場 2:分極電荷の面密度 はいくらか】 という問題があるのですが、真電荷というのは、導体の表面にある電荷のことですよね。その電荷に引き寄せられてマイナスの電荷が全体として導体の方を向いている、そのマイナス分を分極電荷という、と思います。(そういう理解です。) 質問なのですが、この「2」の出し方が分かりません。「1」は導体表面に微小面積dsをとって、電荷ρdsが作る電場…という具合に解いていくと思うのですが、「2」の方はよく分かりせん。解答を見ると、分極による表面密度をpとすると EdS = 1/ε0(ρdS+pdS) と式を立てているのですが…。なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。 導体の表面の電荷と分極電荷と電場の関係がよく分かりません。 よろしくお願いします。

  • 誘電体電界・電束密度境界条件の使い方教えてください

    私は今電気磁気学の基礎的な部分を勉強しています。 それで疑問に思った所を質問しに来ました。 前提条件として、ε1、ε2[F/m]の誘電体が接し、境界面上に真電荷は無いものとする。 以下はガウスの法則を適用して導出することができる。 電界に関する境界条件:誘電体の境界部分に於いて、電界の接線成分は連続である。 電束密度に関する境界条件:誘電体の境界部分に於いて、電束密度の法線成分は連続である。 ということが教科書に書かれていましたが、言い回しが分かりにくいのと、具体的な適用方法がわからないので難儀しています。 「誘電率ε1[F/m]の誘電体1から誘電率ε2[F/m]の誘電体2のと境界面に電界E1が入射角θで入射した時、誘電体2内での電界E2を導出せよ。」 と言う割と簡単そうな問題を解こうとしたのですが、以上に言ったことより、原理が理解できていない為にすんなり解くことができません。 私は取り敢えず境界条件から、電束密度と電界が屈折することを利用して解こうと思いました。 以下が過程です。 D1cosθ1=ε1E1cosθ1=D2cosθ2=ε2E2cosθ2 E1sinθ1=E2sinθ2より tanθ1/tanθ2=ε1/ε2 ∴ε1E1cosθ1=ε2E2cosθ2 θ1=θ、θ2は屈折角として E2=ε1E1cosθ/(ε2cosθ2) この答では駄目でした。やはり、問題文に与えられていない文字を使ったからでしょう。 コンデンサの境界条件を使う問題は割と分かったのですが、これは他にどう解けばいいのかわかりません。どなたか解き方や教えてくれる人がいらっしゃいましたらお教えください!

  • 電磁気学に関してです

    某大学院試験の問題なのですが 解答がないため困っています 半径2.0cmの帯電した導体球が真空中にある。 導体球の表面は比誘電率が2.0の厚さ1.0cmの伝導体で覆われている。 導体球の中心から距離10cmの位置の電界強度は1.0*10^2V/mであった。 解答に当たっては単位も明記すること。また、真空の誘電率はε0[F/m]としてよい 1 導体表面の面電荷密度を求めよ 2 導体表面の単位面積あたりに働く力の大きさを求めよ 3 導体の電位を求めよ 4 誘電体の外表面の分極面電荷密度を求めよ 5 静電誘導を求めよ という問題です。 どなたか分かる方がございましたら 教えていただけませんか?? よろしくお願いいたします!!!