• ベストアンサー
  • すぐに回答を!

誘電体中の導体、分極電荷などについて。

【導体が誘電率εの誘電体に囲まれているとき、真電荷の面密度ρとすると、 1:導体表面の前方の電場 2:分極電荷の面密度 はいくらか】 という問題があるのですが、真電荷というのは、導体の表面にある電荷のことですよね。その電荷に引き寄せられてマイナスの電荷が全体として導体の方を向いている、そのマイナス分を分極電荷という、と思います。(そういう理解です。) 質問なのですが、この「2」の出し方が分かりません。「1」は導体表面に微小面積dsをとって、電荷ρdsが作る電場…という具合に解いていくと思うのですが、「2」の方はよく分かりせん。解答を見ると、分極による表面密度をpとすると EdS = 1/ε0(ρdS+pdS) と式を立てているのですが…。なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。 導体の表面の電荷と分極電荷と電場の関係がよく分かりません。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数2808
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

質問の後半に, >なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。 とありましたが,「このEは表面の電荷だけが作ったEだから」という文をみて,こう思いました。 1:で求めたE(ρ/ε)は,僕の解答通りなら,誘電体内の電界です。つまり,導体表面の電荷が作ったEではなく,分極電荷の影響も考慮された電界です。だから,2:で,このEを使って解けるのです。 導体と誘電体が密着している場合は「1:導体表面の前方の電場」とは,誘電体の分極電荷のちょっと外側の電界です。この問題はこの設定だと思います。 それに対し,導体と誘電体の間に真空の隙間がある場合は「1:導体表面の前方の電場」とは,導体と誘電体の隙間の電界です。これはE=ρ/ε0 となりますが,誘電分極を考慮していません。この電界で2:は解けません。 nabewariさんはこの状態と勘違いしたのかな?と思ったのです。 ---------------------------------------- 僕の考えたこの問題のイメージとして,正に帯電した導体の球の回りに,誘電体が密着してぐるりと覆っていると思ってください。 1:は導体のちょっと外側の電界を出せという問題です。負の誘電分極が内部にありますので,誘電分極に左右されない ∫∫Dds=Q(真電荷) …(1) で,電束密度をだし,D=εE …(3) を利用して電界を出しました。 2:で誘電分極を出せという問題は,誘電分極が入った式 ε0∫∫Eds=Q+Q'(真電荷+分極電荷)…(2) に1:のEを代入して出しました。  ---------------------------------------- 文が分かりづらくてすみません。-----------の間だけ見てくれた方が分かるかも・・

共感・感謝の気持ちを伝えよう!

質問者からのお礼

二度目の回答ありがとうございます。 おかげさまで理解できたと思います。ありがとうございました。

その他の回答 (1)

  • 回答No.1

まず,ガウスの法則の確認ですが, ∫∫Dds=Q(真電荷) …(1) ε0∫∫Eds=Q+Q'(真電荷+分極電荷) …(2) D=εE …(3) 1:導体表面の前方の電場 これは,導体のちょっと外側(誘電体を少し含む)閉曲面の電界を行っているのだと思います。その内部には Q+Q' がある。 (1)を適用して, Dds=ρds から, D=ρ よって(3)より,電界は E=D/ε=ρ/ε 2:分極電荷の面密度 上と同じ閉曲面で,(2)を適用して ε0Eds=ρds+pds から, ε0E=ρ+p よって,p=ε0E-ρ=ε0ρ/ε-ρ=(ε0/ε-1)ρ つまり,1:のEは誘電体中の電界で,nabewariさんは,導体の外側で誘電体より内側の電界と勘違いしているだけではないかと思います。 見当違いだったらすみません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 すみません。多分ご指摘のところが、私は分かっていないと思うのですが、 >1:のEは誘電体中の電界で,nabewariさんは,導体の外側で誘電体より内側の電界と勘違いしている がよく分かりませんでした…。 もし、よろしければ、別の言葉で教えていただけると嬉しいです。 勝手なことを言って、申し訳ありません。 よろしくお願いします。

関連するQ&A

  • 分極電荷密度について

    分極電荷密度を求めるときに使う式は -σ=-p =ε0(εr-1)E|r=a なのですが、問題でもし真空でなくて誘電体中側の導体表面に表れる分極電荷密度を求めるときは、どうしたらいいですか?

  • 誘電体球の分極電荷密度について

    半径aの誘電体球(線形常誘電体 P = ε0 χ E)の中心に電荷 q (>0)をおいた。この場合の電気分極を求め、分極電荷密度を求めよ。 という問題なんですが ρp = -∇・P=-∇・ε0 χ E=0という誤った答えになってしまいます。 よろしければどこが間違っているのかと詳しい計算式を教えてください。 よろしくお願いします。

  • 誘電体の中に誘電体がある場合について

    比誘電率ε_2の大きな誘電体の中に比誘電率ε_1の誘電体の球(半径R)が埋め込まれていて,全体に対して外から+x方向を向いた一様な電場E_0がかかっている.このときの誘電体球の内部の電場を求めよう. 2種類の誘電体の内部での電荷密度はゼロなので,各誘電体の内部での電位(r)はラプラス方程式△V(r)=0の解である.境界面に分極電荷が現れるが,分極電荷の作る電場は遠方ではゼロになる.そこで,前節の例を参考にすると,電位はV(r)=-(E_0)rcosθ+acosθ/r^2 (r>R) a:定数 , V(r)=-E_1rcosθ (r<R)という形をしていることがわかる.(ここでは電位がこのようになるとしておいてください,この式が成立するというのはわかります) cosθ/r^2という形の項は球の中心で無限大になるので,誘電体球の内部の解には含まれていない.したがって,誘電体球の内部の電場E_1は外部からかけた電場E_0に平行で一様であることがわかる. まず一つ目の質問なのですが,なぜここでE_1とE_0が平行で一様であるということがわかるのでしょうか? 式が成立するのはわかりますが,なぜこの事実が言えるのかということがわかりません. また本の続きですが,2種類の誘電体の境界面(r=R)に分極電荷が存在するので,境界面で電場は不連続であるが,電位は連続なのでa=(E_0-E_1)R^3という関係が得られる. 2種類の誘電体の境界面で電束密度の外向きの法線方向成分D_n=(ε_r)(ε_0)E_n=-(ε_r)(ε_0)∂V/∂r・・・(1)は連続なので(ε_1)E_1=ε_2(3E_0-2E_1)・・・(2)という式が導かれる. E=-gradVというのはわかるのですが,なぜE_n=-∂V/∂rというようにr方向のみに依存しているということがわかるのですか? この場合,電場はθ方向などにも依存するのでは・・・. また,(1)が成り立つと認めた場合に(2)をどのようにして導いたのかがよくわかりません. 分かる方がいらっしゃいましたら教えていただけると本当に助かります. よろしくお願いいたします.

  • 導体の誘電率

     導体の内部静電場が0になる事は、ふつう最小エネルギー定理からかな?、と思うのですが、この解法は電荷移動の過渡過程を考えていません。それで自由電子モデルを使って、少しだけ過渡過程を考えてみました。  孤立した導体に外部電場がかかるとOhmの法則から、自由電子が移動を始めますが、誘電体のイメージと重ねると、誘電体では原子や分子から出て来ない電子が自由電子として飛び出してきて、外部電荷を完全に打ち消すような表面電荷になると思えます。 (実際には飛び出さずに、電子軌道を乗り換えるだけですが)  よって導体は電気感受率∞の誘電体ですが、逆にそうなると、電荷分極が起こるより先に内部電場が消えてしまって、表面に移動した自由電子を除き、残りの部分は電子軌道のランダム乗り換えで拡散し、結局分極はほとんど起こらないような気がします。  という訳で理想化すれば、導体の誘電率は真空の誘電率ε0に等しいという話になります。この意味は、電束に関する微分形のガウスの法則を表面電荷に対して、導体表面の法線方向のデルタ関数を使って、強引に電場で書いてやった場合、そこに登場する物質の誘電率が、ε=ε0という意味です。  しかしこのサイトのいくつかのQ&A(金属の誘電率)を読むと、周波数0の直流に対応するような電場の場合(まさにいま考えている外部電場)、誘電率は「-」という記述が見られます。上記のようなモデルは、やっぱり粗すぎるのでしょうか?。  それとも誘電率は「-」とは、電磁場の方程式系を正直に解いた場合に、結局定常状態では電場は導体内部に侵入できないという事を表す記述なのでしょうか?。適切に誘電率「-」ならば、導体内電場なしと解釈できるので。  よろしくお願いします。

  • 誘電体上の電荷密度

    物質表面の電荷密度は表面電場を誘電率で割ることで得ることができます。 導電体の場合には、電気力線が表面に対して垂直なので計算は簡単ですが http://www.f-denshi.com/000TokiwaJPN/32denjk/fig/1602.gif この絵に描かれてあるように、誘電体の場合には電気力線が90°以外の角度でも 入ることができます。 となると、誘電体上の電荷密度を計算するためには 表面に対して90°ではなく電気力線に沿った角度での電場、 すなわち電場の長さを誘電率で割る必要があるのでしょうか?

  • 電荷面密度

    誘電率がε1の誘電体のなかに 半径aの導体球が電荷Qを持っているとき。 中心からrの距離での誘電体内での電束密度D の大きさがその距離での電界Eを用いて、 D=ε1・E となる。ところまではわかるのですが、 次に、導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので、導体表面上の電荷面密度は? というところの電荷面密度が求められません。 その前に「導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので」という文章がどういう意味なのか わかりません。 どなたかわかる方いらっしゃいましたらお願いします。

  • コンデンサの片側板の電荷分布 / 球状導体の分極

    こんにちは、導体での電荷分布についてお伺いします。 大きく分けて二つの状況、質問事項は三つ御座います。宜しくお願いします。 添付の図を併せてご覧頂ければと思います。 1)帯電したコンデンサの極板での電荷分布 図の通りですが、よくコンデンサが帯電した際の電荷分布が模式的に表され、片方がプラス、もう片方がマイナス、というシンプルに表示されています。これをもっと細かくみるとどうなるでしょうか。つまり、たとえばプラスに帯電している極板に注目した場合、最前線の表面(つまりマイナス側の極板と対峙している面)では、もちろんプラス電荷が占めていると思います。この面から段々離れていくことを想定して下さい。 プラス電荷の密度は変わりますでしょうか。つまり、最前線の表面がもっとも高く、段々と低くなっていくという想像が働きますが、いかがでしょうか。しかしそれでは、連続した導電体の電位はどこも等しいという原則に反するかと思いますが、どうでしょうか。どういった電荷分布となっているのか、そしてその理由は何か、というのが私の悩んでいる点です。 2)導体の球がありあます。始めはニュートラルな状態です。これを外部から電場を与えて外側(表面)をプラスに帯電させたとします。 2-1)この件に関して、ひとつ言葉の問題になりますが、外部から電場を与えて帯電させた、というのは正しくない気がします。厳密には分極ではないでしょうか。「帯電」と「分極」の言葉の違いですが、 前者は電荷を注入することかと思います。この場合、その注入された物体の正味の電荷はプラスまたはマイナスのどちらかに偏ると思われます(もちろん、プラスを注入されたらプラス)。後者、「分極」は正味の電荷はゼロかと思います。これはもともとニュートラルなものをたとえば、左側だけプラスにして、その結果反対の右側ははマイナスになった、という状況かと理解しています。いかがでしょうか。この理解が正しいとすると、(2)の文章は厳密には、「2)導体の球がありあます。始めはニュートラルな状態です。これを外部から電場を与えて外側(表面)をプラスに分極させたとします。」ではないでしょうか。 2-2) (2)の状況において、はじめニュートラルの状態から電荷を注入したのではなく、偏らせただけなので、正味の電荷はゼロにならなければなりません。すると、今表面が正に帯電しているとすると、負の電荷はどこにいくでしょうか。想像としては、中心、かと思います。ただ、これが正しいということを証明するにはどうしたらよいか悩んでおります。数式できちんと示せれば嬉しいのですが、いかがでしょうか。

  • 誘電分極による不導体内部の電界(電場)の向き

    誘電分極による不導体内部の電界(電場)の向き 右向きの一様な電界の中に不導体を置くと、誘電分極が起きて、各分子内で (-+)(-+)(-+)(-+) (-+)(-+)(-+)(-+) (-+)(-+)(-+)(-+) という電荷の偏りが生じ、 これにより、不導体内部では左向きに電界が生じ、外部からの電界を少し弱める、 と高校の授業で習いました。 でもよく考えると、どうして不導体内部で左向きに(外部の電界を打ち消そうとする向きに)電界が生じるのでしょうか? 導体の静電誘導だったら、電子が導体内部で極端に左に偏るから、導体内部で左向きに電界が生じるのも納得なのですが、 上図のような不導体の誘電分極だと、見方によっては右向きに電界が生じると見えなくもないのでは? 磁石だったら、+をN、-をSとすると、磁界は右向きですよね? 上図のように分極した時、何故電界が左向きになるのか、教えてください。

  • 導体の表面付近における電場の強さについて

    導体において、電荷面密度σのところの導体の表面付近の電場の強さはE=σ/ε_0 そのような電荷面密度σをもつ導体表面では、単位面積あたり次のような静電力が作用する。f=σ^2/2ε_0 このように参考書には書いてあるのですが、なぜこのようになるのかは全くかかれていません。 なぜこれらが成り立つのかを詳しく教えていただけないでしょうか。 よろしくお願いいたします.

  • 誘電体を挿入したコンデンサーの問題

    極板間の電位差をV0、極板面積をSとします。 極板の間には誘電体1・2が挿入されていて、それぞれ誘電率ε1・ε2、厚みd1・d2、面積Sです。誘電体1と2の境界には、面密度σの真電荷が与えられています。 まず、誘電体1・2中の電場の大きさをそれぞれE1・E2とすると、境界では電荷密度が等しいので、σ=ε1E1=ε2E2となりますよね? 次に、電極に蓄えられる電荷を求めたいのですが、問題によるとガウスの“定理”を用いて解くと書いてあります。 この解法がよくわからないので、教えてください。 よろしくお願いします。