• 締切済み

a^0=a^(1-1)=a^1*a^(-1)=a*(1/a)=1の証明の間違っていますが、どこ(何が)間違っているか、わかりやすく説明して下さい。

kabaokabaの回答

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.4

>a^r a^s = a^{r+s} >(a^r)^s = a^{rs} >は指数の公式なので認められているのではないのですか? 何を認めて,何を導き出すかという「順序」が問題なのです. 順番に追いかけます.a≠0 とします. (1) 自然数に対して,指数法則を示す (2) (1)を拡張して,整数全体で指数法則が成り立つように a^0=1,a^{-1} = 1/aと「定めます」 (3) 正の有理数で指数法則が成り立つように a^{m/n} = 「a^nのm乗根のうちの正のもの」と定めます (4) (2)を考慮して,負の有理数で指数法則が成り立つようにするならば a^{-m/n} = 1/a^{m/n} と「定めるしかない」. (5) 任意の実数rに対して,指数法則が成り立つように a^r を定める(本質的にはrが無理数であるケースだけ追加する). #(5)のケースは結構難しい。。。実数の性質をばりばりに使うことになり #まじめに構築するのは大学の一年生レベルです (6) 気合があれば複素数にも拡張できる 多少順序は変わることもありますが(例えば,負の整数に拡張する前に 正の有理数の場合の定義をしたって構わない), おおよそこういう流れになります. つまり「指数法則」がどんなケースでも成り立つように, 指数の定義を定めていくのです. したがって,逆に指数法則を「どんなときでも成り立つ」と先に 認めてしまえば,a^0=1 は証明できてしまうのです. ちなみに・・・0^0はふつうは定義しません. 0^0は指数法則とうまく噛み合わないのです. たとえば,0^0 = 0^(1-1) =0^1 / 0^1 = 0/0 なんてなってしまいます. 「定義があって,それゆえ法則がある」というのが まあ,分かりやすい普通のパターンなんですが, 指数法則の場合「法則が成り立つように,定義を定める」という ケースの初等的な場合なんで,混乱を招きやすいのでしょう. けど・・数学全体ではこういう 「法則が成り立つように定義する」のは 実はよくあります(というか・・ある程度のレベルにいくとほとんど). 初等的なところでは,他にも 「素因数分解の一意性を保つために,1は素数としない」 という見方もあります.

dream-team
質問者

補足

『正の実数aに対して、a^0=1』の定義の質問をしましたが、何が(どこが)間違っているのかわかりやすく教えて貰えませんか?上記の内容では、順番をかえれば証明はできるというふうに捉える事ができるのですが…。それだと、定義ではなく定理になってします気がするのですが。

関連するQ&A

  • a・0=0の証明

    単純なんですが分からず悩んでます・・ 任意のaに対してa・0=0を証明するにはどうすればいいでしょうか? a+x=aを満たすxが0であるという定義から導けますか?

  • 高校数Aの証明問題なのですが。

    a+b+c=0を満たす実数a,b,cについて(lal+lbl+lcl)二乗≧2(a二乗+b二乗+c二乗) の証明方法を教えていただけないでしょうか。 問題集を解いていて途中で行き詰ってしまったのですが、 証明問題に関しては解答が載っていないので参照できず困っています。 教えて頂けると嬉しいです。 また、他の問題についても、確実に自分の解答が正解なのか不安になります。 証明問題で、正解の確認方法というものはないでしょうか;

  • 自然対数eについて次の公式の証明お願いします。

    自然対数eについてよく知られた定義   e=(1+1/n)^(n乗) 上記定義の証明をお願いしますm(-_-)m できるだけ早くしていただければ、幸いです。

  • 証明したいのですが

    333の3乗+444の3乗+555の3乗=666の3乗となる事を証明したいのですが、どなたか教えてくださいませんか?

  • 証明の説明

    GCD(m,n)=1 cは任意の整数 ⇒ f(a)=ma+cで定義されたZn自身からの写像は全単射である。 この証明の単射性の証明ですが f(a)=f(b)とする。 このとき ma+c≡mb+c (mod n)これはnが(ma+c)-(mb+c)を割り切る。 したがってnはm(a-b)を割り切る。 GCD(m,n)=1よりnは(a-b)を割り切る。 しかしnが(a-b)を割り切るのは(a-b)=0の場合つまりa=b なぜなら a,b∈Znだから。 最後の 「しかしnが(a-b)を割り切るのは(a-b)=0の場合 なぜなら a,b∈Zn」という所がいまいちわかりません。 なぜそうなるのかどなたか教えてください!

  • a^(log_a{b}) = b を証明せよ?

    a^(log_a{b}) = b を証明せよ? 『a^(log_a{b}) = bを証明せよ』 という問題を知人に聞かれたのですが… 私には、どうも定義が書かれているとしか思えません。 みなさんはどのように解釈されますか?

  • 2=1であることの証明

    2=1であることの証明 a=bとする 両辺をa倍すると a2乗=ab  両辺からbの2乗を引くと a2乗-b2乗=ab-b2乗 因数分解をして (a+b)(a-b)=b(a-b) 両辺から(a-b)をひいて a+b=b 仮定より a+a=a 2a=a 2=1である どうしてこのようになってしまうかがわかりません どこがおかしいのでしょうか

  • a^0=1 の証明 ...

    2つの前提を置く。(a^p, a^qは実数) a^p a^q = a^(p+q) a^(-1) ≠ 0 a^0 に対して、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 次に、a^1 ≠ 0 と a^1 = 0 とに分けて考える。 ただし、a^1 は実数とする。 a^1 ≠ 0 であるなら a^1 a^0 = a^1 により a^0 = 1 である。 a^1 = 0 ならば a^(-1) a^1 = a^0 a^(-2) a^1 = a^(-1) であるから a^0 = 0, a^(-1) = 0, … となるが、この結果はもう一つの前提に反する。 これは a^0 = 0 を許しているからであり a^0 = 1 とすれば a^(-1) × 0 = 1 により a^(-1) が未定義となるので回避される。 以上により、a^0 = 1 であることが証明された。 …で良い?

  • a^0=1 の証明(改)

    以前質問し、そこで指摘された所を修正してみました。 間違えてる点があれば、さらに指摘してください。 -- ここから -- 指数関数は、以下の規則により定義されている。ただし、底と指数及び値域は実数とする。 (1) a^1 = a (2) a^p a^q = a^(p+q) (3) 連続関数である ※定義域は、(3) が満たされる範囲により決定される。 まず、p ≠ 0 での 0^p と 0^0 の関係を確認しておく。 後で述べる理由により (2) を無条件には使えないので、未知の値が1つの場合のみ有効と考える。 ・ (1) より 0^1 = 0 ・ p > 0, q > 0 で考えて (2),(3) より p > 0 に対し 0^p = 0 未知の値を (2) で求めるには、左辺の a^p として求める方法と、右辺として求める方法が考えられる。 前者の場合 q > 0, p > -q とすると 0^p × 0 = 0 が得られるが、この式から 0^p は求められない。 後者の場合 q > 0, p = -q とすると 0^p × 0 = 0^0 が得られるが、0^p が未知なので、この式から 0^0 は求められない。 よって、既知の 0^p から 0^0 を求める方法は存在しない。 また、q = 0 として 0^p 0^0 = 0^p が得られるが、p > 0 に対し 0^p = 0 であるから、この式は 0^0 が何であっても成立する。 さて、ここまでの結果により、0^0 を求めるには 0^0 = 定数 という形の規則が新たに必要なことが分かった。 ここからはこの式を求めるために a^-1 ≠ 0 を前提として考える。 ただし、これを指数関数の定義に加えるという意味ではなく、通常の数学なら成立すべき条件であるから、結果の判定に利用するのである。 a^0 に対し、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 a^0 = 0 とするなら a^1 a^0 = a^1 から a = a^1 = 0 でなければならないが、また同時に a^p a^0 = a^p から p = -1 を含めて a^p = 0 となり、これは前提に反する。 同様の結果は、連立方程式 a^-1 a^1 = a^0 a^-1 a^0 = a^-1 において a^1 = 0 とした場合にも生じる(これが未知数が2つ以上の指数法則を無効とする理由である)。 a^0 = 1 とするなら a^p a^0 = a^p は常に成立する。 この場合 0^-1 × 0 = 1 となる必要があるが、これは 0^-1 が実数ではない(=未定義)ことを示している。 以上により、求めていた規則は (4) 0^0 = 1 あるいは a^0 = 1 であることが証明された。 -- ここまで -- ところで、勘違いしないように付け加えておくと、これは既存の定義から 0^0 = 1 と証明したのではない。 0^0 を求められるように規則を変えるなら 0^0 = 1 でなければならないという証明である。 ただし、(4) を付け加えるならば 0^0 において連続にはならない。 よって、(3) も同時に変更する必要が生じる。

  • 複素数の証明

    この問題について、2乗しなくてもa=-biが成り立つのはa=b=0の時だけであるという証明はあっていますか?