- ベストアンサー
- すぐに回答を!
中学校幾何の証明
あるサイトに、「対角線ACとBDの交点をOとし、辺AB上の任意の点Pと点Dを結び、対角線ACとの交点をQとおく。線分BQと線分POの交点をRとし、直線ARと辺BCの交点をMとおく。このとき、点Mは、辺BCの中点である。」とあり、 「チェバの定理により、 AP/PB×BS/SO×OQ/QA=1(SはBOとAMの交点) メネラウスの定理により、 AP/PB×BD/DO×OQ/QA=1 よって、 BS/SO=BD/DO=2 このことから、Sは線分BOを、2 : 1 に内分する点である。 △ABCにおいて、点Oは辺ACの中点であるので、Sは△ABCの重心となる。 したがって、中線ASと辺BCの交点であるMは、辺BCの中点となる。」 と証明も書いてあったのですが、BS/SO=BD/DO=2になる理由と、Sが△ABCの重心となる理由が分かりません。非常に分かりにくい説明になってしまいましたが、どなたかご解答お願いします。
- pooh314
- お礼率89% (17/19)
- 数学・算数
- 回答数2
- ありがとう数1
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- age_momo
- ベストアンサー率52% (327/622)
これは四角形ABCDの条件が何か抜けていませんか? 解説の途中で >BS/SO=BD/DO=2 >△ABCにおいて、点Oは辺ACの中点である から四角形ABCDは平行四辺形であることを前提にしていると思います。 それを前提にして、 チェバの定理とメネラウスの定理から次式が導かれるのはいいですね。 >AP/PB×BS/SO×OQ/QA=1 >AP/PB×BD/DO×OQ/QA=1 この両式を見比べれば BS/SO=BD/DO ここでOはBDの中点ですからBD/DO=2 が成立しているのだと思います。 次に三角形の重心についてですが、三角形のある辺の中点と向かい合う頂点を結んで 2:1に内分する点は重心になります。重心の重要な性質の一つです。だからΔABCに おいてOがACの中点でBS:SO=2:1ならSはΔABCの重心です。 もう一度、書きますが、ACとBDがそれぞれの中点で交わる四角形(平行四辺形)でないと この証明は成立しないと思います。
その他の回答 (1)
関連するQ&A
- 数学の証明問題について
数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m
- 締切済み
- 数学・算数
- 数1 図形問題の解答お願いします H24.06
下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。
- ベストアンサー
- 数学・算数
- 方べきの定理で分からないのがあるので教えてください
AB=5、BC=6、CA=3である△ABCおいて、∠Aの二等分線と辺BCの交点をDとし、辺BCの中点をEとする。また、△ADEの外接円と辺ABの交点をFとする。このとき、線分BD、BFの長さをそれぞれ求めてください。 ちなみに答えは、 BD=15/4 BF=9/4 です。
- ベストアンサー
- 数学・算数
- 四面体OABCにおいて
点P、点Q、点Rをそれぞれ辺ABの中点、線分PCの中点、線分OQの中点とする 直線ARが平面OBCと交わる点をSとし、直線OSと直線BCの交点をTとする 四面体OABCV1と四面体SABTV2の体積比を求めよ V2=2/3×4V1/7らしいのですが何故ですか?
- ベストアンサー
- 数学・算数
質問者からのお礼
#1に書いた補足のの通り四角形ABCDは長方形でした。ご解答を読むと納得できました。ありがとうございました。