• ベストアンサー

「収束」を定義すれば、位相も定義できる?

kabaokabaの回答

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.4

No.1です No.3さんがお書きになってるようなことを 書こうとしてたのですが, 関数解析は忘れかけてるので抽象的に・・・ 一般に集合Xから位相空間Yへ 写像 f:X -> Y が定義されていれば Xの開集合を f^{-1}(Yの開集合) で定義することで Xは位相空間になります. したがって >この定義では、演算子の全体における「開集合」をあらわに使わずに >「収束」が定義されていますよね。こういう状況を考えて欲しいです. というのは,No.3さんのご指摘のように すでに位相を考えてるようなものなんです. >あるR^d上の(ある条件を満たす)関数の集合(Xとします)に、 >ある方法で「収束」を定義し、Xにこの意味での >収束を定義したものをYと読んでいます。 「その方法」に依存します. というか。。。その定義を伏せる意味が まるでわからないのですが(^^;; もっと直接的に, なんとかという本に,こういう集合にこういう収束性を定義したら いつの間にか位相空間扱いされてたけど何ででしょう? といえば,すっきりしませんか?

eatern27
質問者

補足

ご回答ありがとうございます。 >「その方法」に依存します. >というか。。。その定義を伏せる意味が >まるでわからないのですが(^^;; 本を読んでいた →その本では、収束を定義したと同時に位相空間とみなしていた →(何の説明もなく)位相空間だと言っていたので、一般論として収束を定義すれば位相空間とみなせるのだろう。(そうでないのなら、ちょっとくらいは位相空間とみなせる理由を書くでしょう) →収束を定義した後に、どうやって、開集合を見つけるのだろうか? と思って、最後の部分を質問したんです。 >なんとかという本に,こういう集合にこういう収束性を定義したら >いつの間にか位相空間扱いされてたけど何ででしょう? のように、特にこの本の場合に位相空間と思ってよいのか、という事ではなく、むしろ、一般論として位相空間とみなせるのか(どうやって開集合を見つけるのか)、という事を知りたかったのです。(その一般論で、"収束"をどう扱えばいいか、という事がネックではあったのですが) どういう状況を考えているのか、という例としては、弱収束のようなもので十分で、読んでいる本に書いてあるものである必要がありませんでした。正直、本に書いてある定義をいちいち書くのが面倒だったんですよね(←ぉぃ!)。一方、弱収束の例なら簡単に書けるし、しかも、伝わりやすいだろうと思ったんですよね。だから、(本に書いてあるものではなく)弱収束の例をあげました。 仰るように伏せる理由は全くないので、書いた方がよければいくらでも書きますが、結局は「弱収束の場合と同じ事をやって下さい」という回答になるだけだろうと思います。 ※もうほとんど解決したつもりでいるのですが、本当に弱収束の場合と同じかどうか考えてから締め切るか補足するかしたいと思っています

関連するQ&A

  • 関数解析の問題です。

    以下の問題で困ってます。どなたか解答をお願いしたいんですが。。 1.{xn}(n=1,∞)はバナッハ空間Xの点列でxに弱収束し、{ξn}(n=1,∞)はXの双対空間X’の点列でξに強収束するものとする。このとき数列{<xn,ξn>}は<x,ξ>に収束することを示せ。 2.{xn}(n=1,∞)はヒルベルト空間Xの点列でxに弱収束し、数列{||xn||_X}は||x||_Xに収束するものとする。このとき{xn}(n=1,∞)はxに強収束することを示せ。 よろしくお願いします。。

  • 位相空間の問題です.

    位相空間の問題です. Xを位相空間としたとき,X上の点列x_nが収束することの定義について (1)∀N:xの近傍,∃n_0 s.t. n>n_0⇒x_n∈N (2)∀N:xの開近傍,∃n_0 s.t. n>n_0⇒x_n∈N (1),(2)が同値であることを証明せよという問題なのですが、どなたか解説お願いします。

  • 関数解析の問題です。。

    1.{xn}(n=1,∞)はバナッハ空間Xの点列でxに弱収束し、{ξn}(n=1,∞)はXの双対空間X’の点列でξに強収束するものとする。このとき数列{<xn,ξn>}は<x,ξ>に収束することを示せ。 2.{xn}(n=1,∞)はヒルベルト空間Xの点列でxに弱収束し、数列{||xn||_X}は||x||_Xに収束するものとする。このとき{xn}(n=1,∞)はxに強収束することを示せ。 1、2ともに{xn}が弱収束するので、fを有界線形汎関数として ||f(xn)-f(x)||<ε  for ∀ε と仮定できます。 1の場合、これにプラスして仮定から ||ξn-ξ||<ε とでき、このとき ∀ε>0に対して∃N s.t. ||<xn,ξn>-<x,ξ>||<ε を示せばいいんですよね? このあとどのように||<xn,ξn>-<x,ξ>||を変形したらいいのかわかりません。 2についてもどのように変形していけばいいのかわかりません。 どなたか教えていただけないでしょうか?

  • 点列の収束

    ふたつの点列{x_n}、{y_n}がそれぞれにξ、η∈R収束するとするとき、各自然数n∈Nに対してa_n=(x_n、y_n)とすると点列{a_n}は(ξ、η)∈R^2に収束することを証明せよ。ただし、R、R^2はそれぞれユークリッド距離を用いて距離空間とみなす。 この問題が、大学のレポートで出題されたのですが、よく分からないので、ご解説いただけたらと思います。

  • 収束の定義について

    収束の定義で、以下のように書いてありました。 点列{x^m}(m=1,∞)がa∈R^nに収束する⇔∀ε>0, ∃m*, ∀m≧m*, d(x^m,a)<ε ※(d(x,y)はxとyの距離) この定義で、m*が用いられていますがこのm*は何のためにあるのでしょうか?

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε-δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?

  • lim[x→∞]f(x)の位相での定義は?

    よろしくお願い致します。 『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』 は 『2つの位相空間(X, T)、(Y, S) と map f;X→Y と L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that f(δ)⊂ε}(a ∈X)に於いて、 L≠φ の時、f(x)はLに収束するといい limf(x):=L x→a と表記する。そして、L=φの時、f(x)は発散すると言う』 という具合に一般で定義できると思います。 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 に就いては、 『Bは位相空間(X*,T*)の部分集合Aの開被覆である』 の定義は 『T* の部分集合Bに於いて、A⊂∪[b∈B]b』 『位相空間(X*,T*)の部分集合Aはコンパクトである』 の定義は 『X* の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn} ⊂B (n∈N) such that A⊂∪[i=1 to n]bi』 『位相空間(X*,T*)はコンパクト空間をなす』 の定義は 『位相空間(X*,T*)の部分集合X* はコンパクトである』 『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』 の定義は 『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』 『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』 の定義は 『X* はコンパクト空間 且つ XはX* の中で稠密である』 従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す るので εとδを使うと、 2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位 相空間(X*,T*)は(X,T)のコンパクト化である時、 L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that f(δ)⊂ε}(a∈X*)に於いて、 L≠φ の時、f(x)はLに収束するといい lim f(x):=L x→a と表記し、 L=φの時、f(x)は発散すると言う。 例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞} と定義してみたのですが、 どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、 夫々に何らかの条件を付け加えねばならないような気がします。 どのような条件を付ければ 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 の一般での定義が完成しますでしょうか?

  • 位相空間における集積点

    U(n)={n∈N|n,n+1,n+2,…} O={Φ}∪{U(n)} と与えられています。(N:自然数、Φ:空集合) (N,O):位相空間におけるA={1,3,5,7,9}の集積点を求める問題で、質問があります。 私が解いた結果、集積点は 1,2,3,4,5,6,7,8 だなって思ったんです。(これあってますよね??) で、問題はその後なんですけど、9以上の自然数が集積点でないことを示した方がいいですよね。その場合、 9≦x∈N については、  x∈U(n)となるU(n)は 1≦n≦x だが、  U(i)∩A=Φ (for i≧9, i∈N) したがって9以上の自然数は集積点ではない。 っていう証明で、示せてますか??なんか論理的じゃない気がして…。アドバイスしてもらえませんか。よろしくお願いします。

  • 位相の証明の書き方について

    位相空間の証明を書いてみたのですが、どう書けば一番いいのか分かりません。 書き方が間違っているかどうか確認していただけると助かります! (問題) 位相空間(X,T)とする。自然数の集合N={1,2,3,…}を添字集合とするXの部分集合族{An:n∊N}を考える。 An={1/n}⊂Rとおくとき、∪{(An ) :n∊N}と(∪{An:n∊N} ) ̅とは等しいかどうかを述べ、証明せよ。 ( )は閉集合を表しています。 (証明) X=Rで、{An}は1/nで0に収束する点列なので、 An={1/n}の閉包(An)=An よって、∪{(An ) :n∊N}=U{An:n∊N}となり0は要素ではない。 しかし、0は∪{(An ) :n∊N}の集積点で、0∊(∪{An:n∊N} ) よって、∪{(An ) :n∊N}⊂(∪{An:n∊N} )となり、∪{(An ) :n∊N}≠(∪{An:n∊N} ) と書きました。 間違っていれば、どこをどう直した方がいいのか教えていただけるととても助かります!! よろしくお願いします。

  • 大学数学、位相、距離空間について

    次の問題が分かりません。 距離空間(X,d)の部分集合Fについて、次の条件(1)と(2)は同値であることを示せ。 (1)Fは閉集合である。 (2)Fの点列{x_n}がx∈Xに収束するならばx∈F 位相が苦手でほとんどわからないので、分かる方よろしくお願いします。