• ベストアンサー

ケーリ ハミルトンの定理のなぞ

A=( ab )ならばA*2-(a+b)A+(ad-bc)E=0ですけど、    cd その逆がなぜなりたたないのかがわかりません。        教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

成り立たない場合っていうのは、Aが単位行列の定数倍のときです。 このとき、A=kEとなるので、a=d=k, b=c=0です。 これを、  A^2-(a+d)A+(ad-bc)E=O・・・※1 に代入すると、左辺は、  A^2-2kA+k^2E = (A-kE)^2・・・※2 となりますが、もともとA=kEなので※2=Oです。 つまり、※1は、O=Oという自明な式になり、kを決定できず、したがってAを決定できないことになるわけです。

その他の回答 (1)

  • guide_man
  • ベストアンサー率37% (13/35)
回答No.1

勘違いしてらっしゃると思います。 成り立たないこともある。ってことです。

関連するQ&A

  • トレミーの定理について

    トレミーの定理とは、 四角形ABCDが円に内接すれば、 AB*CD+AD*BC=AC*BD が成り立つ。 というものです。 これは、逆、つまり 四角形ABCDにおいて、AB*CD+AD*BC=AC*BDが、 成り立てば、四角形ABCDは円に内接する。 も成り立つと思いますが、これの証明を教えて頂けませんか。 四角形の内部に点Eをとり、三角形の相似と方べきの定理を利用しようと思ったのですが・・ 上手くいきませんでした(>_<)

  • ハミルトン・ケイリーの定理

    ハミルトンケイリーの定理の問題なんですが、下の式って常に成り立っているといえるのでしょうか?? 二次正方行列をA、単位行列をEとする、またAの各成分は(a b)  (c d)←カッコは二つで一つの行列としてみてくだ      さい。 A^2+A+E=0のとき a+d=-1. (ad-bc)=1 が常に成り立つ。 マジで悩んでいます(>_<)誰か教えてください

  • ケーリー・ハミルトンの定理

    数学Cの問題で、 2次の正方行列Aに対して、A^2-3A+2E=0が成り立つとき、a+d,ad-bcの値を求めよ。 系の問題があるじゃないですか。あれってなぜ与式のAとEの係数と比較するだけじゃだめなんですか?

  • パップスの中線定理(スチュワートの定理)、二等分線の定理

    http://ja.wikipedia.org/wiki/%E4%B8%AD%E7%B7%9A によると、 三角形 ABC の3辺 BC,CA,AB の長さをそれぞれ a,b,c とし、頂点AとBCの中点を結ぶ中線の長さを m とすると、スチュワートの定理より以下の式が成り立つ。 4m^2+a^2=2(b^2+c^2) ∴m=√(2b^2+2c^2-a^2)/2 となることは分かります。次に、 三角形 ABC の3辺 BC,CA,AB の長さをそれぞれ a,b,c とし、頂角Aの二等分線とBCの交点を結ぶ線分の長さを n とするとき、この n をa,b,cのきれいな式で表したいのですが、どのような式になるのでしょうか?

  • <数学C> ハミルトン・ケーリーの定理に関する問題

    行列A(a b)、E(1 0)が、A^2-4A+3E=0を満たすとき、      c d     0 1 a+d、ad-bcの値を求めよ。 という問題で、ハミルトン・ケーリーの定理を用いて式を出し、 与式と係数比較を行ってはいけないのはなぜでしょうか? *行列の表し方が微妙で申し訳ありません。

  • 正弦定理の問題です

    四角形ABCDがあり、AB=3、AD=2、BC=CD、cos∠ABD=3分の1、∠BAD+∠BCD=180°を満たしている。 sin∠BAD=a分のb√c また、BD=d という問題が分かりません。

  • また、三平方の定理?

    教えてください。 まだ、中学2年です。ただ三平方の定理は知っています。 円があります。 3点A・B・Cは円の周上の点で、AB=AC=6cmである。辺BCの延長上の点をDとし、線分ADと円との交点をEとする。ADは何cmになるか? 三平方の定理を使うのでしょうか? 宜しくお願いします。

  • 相似.三平方の定理

    図のように.AB=6cm.BC=8cmの長方形ABCDがあり.∠Bの二等分線とCDの延長との交点をEとする また.BEとAC.ADとの交点をそれぞれP.Qとする. このとき.DEとCPの長さをそれぞれ求めてください 解き方の説明もあればうれしいです

  • 行列の等式と成分(HC定理利用)

    A=(a b c d)とする。A^2=Aとなるとき、a,b,c,dの満たすべき必要十分条件を求めよ。 行列Aについて、ハルミトン・ケーリーの定理から A^2-(a+d)A+(ad-bc)E=O すなわち、A^2=(a+d)A-(ad-bc)Eが成り立つ。 A^2=Aとなるとき (a+d)A-(ad-bc)E=A ゆえに{1-(a+d)}A+(ad-bc)E=O [1]a+d=1のとき (ad-bc)E=O よってad-bc=0 [2]a+dnot=1のときA=(ad-bc/a+d-1)E ゆえに,(ad-bc/1a+d-1)=とおくと A=kE これをA^2=Aに代入して整理すると k(k-1)E=O よってk(k-1)=0 ゆえにk=0,1 よってA=OまたはA=E A=Oのとき a=b=c=d=0 このとき,a+d=0となり,a+dnot=1を満たす。 A=Eのとき a=d=1,b=c=0 このとき,a+d=2となり,a+dnot=1を満たす。 [1],[2]から a+d=1,ad-bc=0;またはa=b=c=d=0;またはa=d=1,b=c=0 教えてほしいところ まず、僕の考え方を述べます。 A^2=Aのa,b,c,dの満たすべき必要十分条件を考えたい。 A^2=(a+d)A-(ad-bc)Eより、 A^2=A ⇔(a+d)A-(ad-bc)E=A ⇔{1-(a+d)}A+(ad-bc)E=O よって、{1-(a+d)}A+(ad-bc)E=Oの満たすべきa,b,c,dの必要十分条件をもとめればよい。 k、s、tを実数、Eを単位行列とする。 正方行列Aに対して sA+tE=O⇔s=t=0またはA=kEより、 s=t=0,またはA=kEとなるような、a,b,c,dの必要十分条件をもとめればよい。 よって[1]a+d=1のとき (ad-bc)E=O よってad-bc=0 [2]a+dnot=1のときA=(ad-bc/a+d-1)E ゆえに,(ad-bc/1a+d-1)=とおくと A=kE よって、a+dnot=1または、a+d=1、ad-bc=0と考えました。 そこで質問です。a+dnot=1のとき、 A=kEとあらわせるのでそれ以上a,b,c,dの関係式は必要ないんじゃないんですか???

  • 二等分線であることの証明

    △ABCの辺BC上の点Pについて、BP:PC=AB:ACが成り立つならばAPは∠Aの二等分線である。・・・(*) 四角形ABCDの2つの内角∠A、∠Cの二等分線の交点が、対角線BD上にあるならば、2つの内角∠B、∠Dの二等分線の交点も、対角線AC上にあることを、(*)を使って証明せよ。 (解答) ∠A、∠Cの二等分線の交点をE、∠Bの二等分線とACの交点をFとする。AE、CEはそれぞれ∠A、∠Cの二等分線であるから、△ABDにおいて BE:ED=AB:AD △BCDにおいてBE:ED=BC:CD よってAB:AD=BC:CDから AB・CD=AD・BC これから 【AB:BC=AD:CD】・・・(1) BFは∠Bの二等分線であるから、△ABCにおいて AF:CF=AB:BC・・・(2) (1)、(2)から AF:CF=AD:CD したがって、(*)からFDは∠Dの二等分線である。ゆえに、題意は示された。 質問は、【 】でくくった部分です。 なぜ、そのような式ができたのか理由を教えてください。 よろしくお願いします。