• 締切済み
  • 暇なときにでも

不等式

2次方程式a(x^2)-4x+a+3=0が-1≦x≦3の範囲に、異なる2つの実数解をもつとき、aの値の範囲を求める問題で、aは実数とすると (i)a>0のとき f(x)=a(x^2)-4x+a+3とおくと D/4=4-a(a+3)>0 より (a+4)(a-1)<0 -4<a<1 f(x)=a(x+(2/a))^2 +(a/2)+3 2次関数の軸の方程式は x=2/a ●-1≦x≦3に2/aを代入して-1≦2/a≦3と考えたのですか参考書の答えは -1<2/a)<3と書いてあります どちらが正しいのですか? ●a<-2 、a>2/3らしいのですが私が解くと -1<2/a a>-2となってしまいます ●f(-1)=2a+7≧0らしいのですが f(-1)=2a+7>0でもいいのですか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数80
  • ありがとう数1

みんなの回答

  • 回答No.1

2次方程式a(x^2)-4x+a+3=0において、a≠0から、両辺をaで割ると、(x^2)-(4/a)x+(1+3/a)=0となる。 こうしておくとaの正負を考える必要がなくなります。 1/a=kとおくと、f(x)=(x^2)-4kx+(1+3k)=0が-1≦x≦3の範囲に、異なる2つの実数解をもつときのkの値の範囲を求めると良いことになります。 勿論、最後は1/a=kからaの範囲を求めます。 判別式>0、f(3)≧0、f(-1)≧0、-1≦2k≦3から求まります。

共感・感謝の気持ちを伝えよう!

質問者からの補足

●参考書には-1<2/a)<3と書いてありますがどこから求めたのですか? 問題の条件-1≦x≦3の範囲からx=2/aを代入したのですか? もしそのような解き方だったら不等式の大きさが違うのですか? < → ≦ になっているので ●a<-2 、a>2/3らしいのですが私が解くと -1<2/a a>-2となってしまいます ●f(-1)=2a+7≧0らしいのですが f(-1)=2a+7>0でもいいのですか?

関連するQ&A

  • 不等式

    2次方程式a(x^2)-4x+a+3=0が-1≦x≦3の範囲に、異なる2つの実数解をもつとき、aの値の範囲を求める問題で、aは実数とすると (i)a>0のとき f(x)=a(x^2)-4x+a+3とおくと D/4=4-a(a+3)>0 より (a+4)(a-1)<0 -4<a<1 f(x)=a(x+(2/a))^2 +(a/2)+3 2次関数の軸の方程式は x=2/a ●参考書には-1<2/a)<3と書いてありますがどこから求めたのですか? 問題の条件-1≦x≦3の範囲からx=2/aを代入したのですか? もしそのような解き方だったら不等式の大きさが違うのですか? < → ≦ になっているので ●a<-2 、a>2/3らしいのですが私が解くと -1<2/a a>-2となってしまいます ●f(-1)=2a+7≧0らしいのですが f(-1)=2a+7>0でもいいのですか?

  • 2次不等式

    2次方程式a(x^2)-4x+a+3=0が-1≦x≦3の範囲に、異なる2つの実数解をもつとき、aの値の範囲を求める問題で、aは実数とすると (i)a>0のとき f(x)=a(x^2)-4x+a+3とおくと D/4=4-a(a+3)>0 より (a+4)(a-1)<0 -4<a<1 …(1) 2次関数の軸の方程式は x=2/a より -1<(2/a)3 より a>-2、 (2/3)<a …(2) f(-1)=2a+7≧0より a≧-(7/2) …(3) f(3)=10a-9≧0より a≧(9/10)…(4) a>0、(1)、(2)、(3)、(4)より 9/10≦aく1 になるらしいのですが答えが合いません どこかおかしいですか?

  • 不等式の問題です

    学校で黒板に板書するよう言われましたが、30分ほど考えても答えにたどり着けません。 「不等式 x^2-10x+24<0(以後(1)と略) を満たす実数xに対して、不等式 a^3+(2-x)a^2-(x+4)a+x^2+2x-8>0(以後(2)と略) が成り立つような実数aの値の範囲を求めよ。」 とりあえず私がやってみた方法は、 (1)から 4<x<6・・・(3) (2)をxの2次関数にして、 f(x)=x^2+(2-a^2-a)x+a^3+2a^2-4a-8 この関数の軸を求めて、軸<4、4<軸<6、軸<6の3つに場合分けしてみました。 が、途中で4次方程式がでてきたりしてなかなか答えが合いません。 どうか助けてください! ちなみに答えは -2√2≦a≦2、4≦a です。

  • 解から一次不等式をつくる

    ●問題 不等式 ax+a-1>0 の解が x<-2 であるとき、 定数aの値を求めよ。 ●解答 不等式 ax+a-1>0 の解が x<-2 であるから、 a<0 であり、 方程式 ax+a-1=0 の解が x=-2 である。 x=-2 を方程式に代入すると -2a+a-1=0 これを解いて a=-1 これは a<0 の範囲にあるから適する。 したがって a=-1 上のものは参考書の問題と解答の丸写しです。 どうして「x<-2 であると、a<0 」であるのかわかりません。 そこから教えてください。お願いします!

  • 対称性とは…?

    下の問題について質問です。 [B3] 3次方程式 x3 + ax2 + b = 0 ……(1) (a,bは定数) があり,x=1 は方程式(1)の解である。 (1) bをaを用いて表せ。 (2) 方程式(1)が異なる3つの実数解をもつようなaの値の範囲を求めよ。 (3) (2)のとき, 方程式(1)の異なる3つの実数解をα,β,γとする。β = α + γ を満たすとき, aの値を求めよ。 解答: (1)(1)にx=1を代入すると1+a+b=0 ∴b=-a-1 (2)(1)はx=1を解にもつから、(x-1)で割り切れる。    よって、(1)⇔(x-1)(x^2+(a+1)x+(a+1))=0 (割り算の筆算を行ってください。)    ここで、2次方程式x^2+(a+1)x+(a+1)=0がx=1を除く異なる2つの実数解をもてばよい。    x≠1だから、x=1を代入するとa=-(3/2)より、a≠-(3/2) …(1)    この2次方程式の判別式をDをおくと、D>0であればよい。    D=(a+1)^2-4(a+1)=(a+1)(a-3)>0 ∴a<-1, 3<a …(2)    (1)(2)より、a<-(3/2),-(3/2)<a<-1,3<a (3)(1)はx=1を解にもつが、α、β、γのいずれにもなりうる。それについて場合分けする。    (a)β=1のとき     2次方程式x^2+(a+1)x+(a+1)=0 から解の公式より、x=(-(a+1)±√(a+1)(a-3))/2     この2つの解がα、γだから、α+γ=-(a+1)     また、2β=2だから、2β=α+γより、-(a+1)=2 ∴a=-3(これは(2)の解を満たすためよい。)    (b)α=1のとき     2次方程式x^2+(a+1)x+(a+1)=0 から同様に、x=(-(a+1)±√(a+1)(a-3))/2     (β,γ)=((-(a+1)±√(a+1)(a-3))/2,(-(a+1)?√(a+1)(a-3))/2)(複号同順)だから、      2β=α+γより、(中略)      ±3√(a+1)(a-3)=a+3 両辺を2乗し、(中略)     2a^2-6a-9=0 解の公式より、a=(3±3√3)/2 これらは(2)を満たす。    (c)γ=1のとき     αとγの対称性より、(b)からa=(3±3√3)/2    (a)~(c)よりa=-3, (3±3√3)/2 (3)のcについてですが、αとγの対称性とは一体何のことですか?よろしくお願いします。

  • 数学I 二次関数(1)

    基本的な問題は解けるのですが以下の問題がまったく解らず、回答もないので困っています。 教えていただけないでしょうか?よろしくお願い致します。 1.a,bを実数として2次関数 y=2x^2-2ax+b の最小値を -a^2/2+3a-4 とする。 (1)bをaで表す。 (2)この関数がx軸と交点を持たないaの範囲を求める。 2.aを実数として、2つの2次方程式を x^2+2ax+3a-2=0・・・I  x^2-4ax+a+5=0・・・II とする。 (1)Iが重解を持つaの値を求める。 (2)IIが実数解を持たないaの範囲を求める。 (3)IもIIも実数解を持たないaの範囲を求める。 3.aを実数として、 f(x)=(x+a)^2+(1/x+a)^2+a とする。 (1)f(x)を t=x+1/x の式で表せ。 (2)(1)のtの式をg(t)として、g(t)=0が 実数の解を持つaの範囲を求める。

  • 解き方がわかりません( ´;ω;`)

    1) 2つの2次方程式 x&#178;+ax+a+3=0 , x&#178;&#65293;ax+4=0 がともに虚数解をもつとき、定数aの値の範囲を求めよ。 2) 2つの方程式 x&#178;+2ax+a+2=0 , x&#178;&#65293;4x+a+3=0 のうち、どちらか一方だけが実数解をもつように、定数aの値の範囲を定めよ。 3) a , b , c を定数とする。 2次方程式 ax&#178;+bx+c=0は、2次の係数aと 定数項cが異符号ならば、異なる2つの実数解をもつことを示せ。

  • わからないので教えてください(´・ω・`)

    2つの2次方程式 x&#178;+ax+a+3=0 , x&#178;&#65293;ax+4=0 が ともに虚数解をもつとき、定数aの値の範囲を求めよ。 2つの方程式 x&#178;+2ax+a+2=0 , x&#178;&#65293;4x+a+3=0 のうち、どちらか一方だけが実数解をもつように、定数aの値の範囲を定めよ。 a , b , c を定数とする。 2次方程式 ax&#178;+bx+c=0は、2次の係数aと 定数項cが異符号ならば、異なる2つの実数解をもつことを示せ。

  • 2次不等式の解について

    2次方程式 f(x)=x^2-2x-a^2+2a について考えよう。 f(x)=0 の解は x=a,x=2-a であり、 『a-(2-a)=2(a-1) であるから2次方程式f(x)<0 の解は a<1のとき  a=1のとき 解なし a>1のとき 2-a である。』 という問題なのですが、f(x)=0の解は出せるのですが、『』内の計算が何をやっているのか全然分からないんです。2次「方程式」は解けるのですが2次「不等式」になったら考え方がイマイチよく分からないのですが、どう考えればいいのでしょうか?

  • 不等式で

    数1の解法本や参考書に例題がなく、解き方がサッパリ分かりません。 すみませんが、答えが導き出せるように教えていただけませんか? (a-1)x+(a+1)<0の解がx<-√3のとき、aの値を求めよ。 答えはa=2+√3になるそうです。 お願いします。