- 締切済み
- すぐに回答を!
数I 二次方程の範囲
「方程式x²-2ax+2a²-5=0が1より大きい相異なる2個の実数解を持つような定数aの値の範囲を求めよ。」という問題がありまして、[1]判別式について、[2]軸の位置について、[3]f(0)について、という順序で解いていくものです。 しかし私は[3]で止まってしまいました。どこか計算ミスをしているんだと思います。 私の回答は、 f(x)=x²-2ax+2a²-5とするとf(x)=(x-a)²+a²-5 二次方程式f(x)=0が1より大きい相異なる2個の実数解を持つための条件は放物線y=f(x)が1より大きいx軸の正の部分と異なる2点で交わることである。 [1]f(x)=0の判別式をDとするとD/4=a²-(-5)=a²+5>0これを解いてa>±√5…(1) [2]放物線y=f(x)の軸は直線x=aでこの軸についてa>1…(2) [3]f(0)>1から-5>1 で止まってしまいました。 一つ目の質問はまずどこでミスをしているのかを教えて下さい。 そして二つ目の質問は、この放物線は下に凸の放物線でf(x)=x²-2ax+2a²-5よりy軸に接する値は-5だと思うのですが、下に凸の放物線でy軸に接する値が-5だとしたら図を書くと「1より大きい相異なる2個の実数解をもつ~」という条件に反すると思うのですが、どうなんでしょう。 宜しくお願いします。

- 回答数4
- 閲覧数165
- ありがとう数3
みんなの回答
- 回答No.4
- 178-tall
- ベストアンサー率43% (761/1731)
>(1)f(x)=0の判別式をDとするとD/4=a^2-(-5)=a^2+5>0 これを解いてa<-√5、√5<a…(1) ↑ D/4 = -a^2+5 > 0 、これを解いて |a| < √5 … (1)' >(2)放物線y=f(x)の軸は直線x=aなので、この軸は1より大きいからa>1…(2) ↑ 仰しゃるとおり。 >(3)f(x)>0から1-2a+2a^2-5>0よってa>2、a>5…(3) ↑ おそらく誤算。 f(1) > 0 から 1-2a+2a^2-5 = 2(a-2)(a+1) > 0 。 よって a > 2 & a < -1 … (3)' >(1)(2)(3)の共通範囲を求めてa>5 ↑ (1)' (2) (3)'の共通範囲だとして、2 < a < √5 。 …となりそう。
関連するQ&A
- 数I 二次方程式の範囲 訂正
もう一度解きなおしてみました。 「方程式x²-2ax+2a²-5が1より大きい相異なる2個の実数解をもつような定数aの値の範囲を求めよ。」 自分の回答▽ f(x)=x²-2ax+2a²-5とするとf(x)=(x-a)²+a²-5 二次方程式f(x)=0が1より大きい相異なる2個の実数解をもつための条件は放物線y=f(x)が1より大きいx軸の正の部分と異なる2点で交わることである。これは次の(1)~(3)が同時に成り立つことと同値である。 (1)f(x)=0の判別式をDとするとD/4=a²-(-5)=a²+5>0 これを解いてa<-√5、√5<a…(1) (2)放物線y=f(x)の軸は直線x=aなので、この軸は1より大きいからa>1…(2) (3)f(x)>0から1-2a+2a²-5>0よってa>2、a>5…(3) (1)(2)(3)の共通範囲を求めてa>5 ,, となりました。合ってますか? それと、この放物線のグラフを書く場合はy軸は省略してもいいのでしょうか。
- 締切済み
- 数学・算数
- xの二次方程式
xの二次方程式 x^2-2ax+4=0の解が次の条件を満たすようなaの値の範囲を求める。 1. 2つの解がともに1より大 2. 1つの解が1より大で、他の解が1より小 皆さんならどう解きますか? f(x)=x^2-2ax+4 (x-a)-a^2+4=0 1. f(x)=0の判別式D≧0 D/4=a^2-4≧0 a≦-2,2≦a •f(1)>0 1-2a+4>0 a<5/2 •軸が1より大きい f(x)=(x-a)^2-a^2+4 軸 x=a a>1 以上より、2≦a<5/2 2. f(1)<0となればいい a>5/2
- ベストアンサー
- 数学・算数
- 二次関数の問題なので
二次関数の問題なので 例えばですが y = x^2 + 2kx + k^2 - 2 という二次関数の方程式があるとします。 その方程式f(x)=0が実数解α、β(α≦β)をもつとき、次の問題に答えよ。 という設定があり、(1)の問題 α、βがα≦1≦βをみたすようにkの値の範囲を定めよ。 だったとします。 この問題を解くにあたって、既に問題文に「実数解α、β(α≦β)をもつ」とある場合 もう判別式をつくる必要はないのですか? 普通なら、「判別式が正」「この問題の場合、軸の場合分け」「x=1のときyが負」という三つの条件が必要ですよね? しかし、既に問題文に「絶対二つの解をもつ」と書いてある場合は、判別式は必要ありませんか?
- ベストアンサー
- 数学・算数
- 回答No.3
- shintaro-2
- ベストアンサー率36% (2266/6243)
>[3]f(0)について、という順序で解いていくものです。 この理解が間違いです。 >[1]f(x)=0の判別式をDとするとD/4=a²-(-5)=a²+5>0これを解いてa>±√5…(1) ここで間違い a^2+5は、必ず正 >[2]放物線y=f(x)の軸は直線x=aでこの軸についてa>1…(2) そんなことは求めてません。 グラフを描けば分かりますが、 X=aを軸とする2次関数です。 2つの実数解を持つことは明らかで、 √(a^2+5)>0なので 小さい方の解a-√(a^2+5)>1であることを保証するためには どんな条件が必要か求めなさいという問題です。
関連するQ&A
- 数学 二次方程式 定数の範囲について
x^2+ax+3a=0 (1) x^2-ax+a^2-1=0 (2) 二つの二次方程式がともに実数解をもつように定数aの値を求めよ。 (1) 判別式D≧0を使う。 a^2-12a≧0 a≦0 、 12≦a (2) 同じく判別式D≧0を使う。 -3a^2+4≧0 a≦-(2√3)/3 、 (2√3)/3≦a 私の答え a≦0 、 (2√3)/3≦a となったのですが、答えは -(2√3)/3≦a≦0 のようです。 私はどこで間違ったのでしょうか? 調べて考えた結果、D≧0ではなく、どこかでD≦0となる部分があるように思えました。 ですが、どこでなるのかもわからないし、なぜD≦0になるのかもわかりません。 実数解を持つようにいわれてるのに、答えに負の範囲があるのも疑問です。(私の間違った答えにも0≧aがあるのですが、なぜなんでしょうか。)
- ベストアンサー
- 数学・算数
- 二次方程式の判別式について
以前、数学の授業で判別式D=b^2-4acを使って、二次方程式の実数解の有無を調べることを習いました。 質問なのですが、なぜ判別式D=b^2-4acを使うとその二次方程式の実数解の有無が分かるのでしょうか? よろしくお願いします。
- 締切済み
- 数学・算数
- 高1 2次関数のグラフと二次方程式
a、bは定数とする。すべての実数aに対して、xの二次方程式 x2乗+ax+a2乗+3ab+3=0 が 実数解をもたないときのbの値の範囲を求めよ。 という問題なのですが、判別式を使って a2乗+4ab+4>0 というところまではわかりますが、この先が全くわからないのです。 どなたか親切な方ご指導お願いします。
- ベストアンサー
- 数学・算数
- 数II図形と方程式の単元の問題解説
X^2 + 2y^2 = 1 の範囲を満すとき、x+y^2の最大値、最小値を求める問題において、x+y^2= tとおいて、x^2+2y^2=1に代入してxの二次方程式にする。そこで、判別式から実数解を求めるための条件からtの範囲を求めると最大値は出ます。図形的に見れば楕円と放物線の交点になるので、判別式で最大値、最小値が求められると思うのですが、なぜ判別式からは最小値が出ないのか、解説をお願いします。
- ベストアンサー
- 数学・算数
- 解の存在する範囲
///問題/// xの2次方程式 x^2+2ax+4a^2+2a=0 (aは実数の定数)がある。 この方程式の実数解のとり得る値の範囲を求めよ。 ///解答/// この方程式の実数解をαとすると、代入して α^2+2aα+4a^2+2a=0 aについて整理すると 4a^2+2(α+1)a+α^2=0 求めるものは、この方程式を満たす実数解aが存在するような実数αの条件である。 よって、aの方程式と考えて判別式をDとすると D≧0 D/4=(α+1)^2-4α=-3α^2+2α+1であるから -3α^2+2α+1≧0より 3α^2-2α-1≦0 (3α+1)(α-1)≦0をといて -1/3≦α≦1 したがって、実数解の存在する範囲は-1/3≦x≦1 なんでaについて整理するんでしょうか? xについてじゃだめなんですか? あと問題文の >この方程式の実数解のとり得る~ のあたりもよくわからなくなってきました。 実数解ってグラフにしたときにx軸と放物線がくっつくところと考えてたんですけど違うんでしょうか…?
- ベストアンサー
- 数学・算数
- 2次関数
解答がなく困ってます。どなたか添削お願いしますm(_ _)m aを0でない定数とする2つの方程式 ax^2-4x+a=0,x^2-ax+a^2-3a=0 について、次の条件を満たすaの値の範囲をそれぞれ求めなさい。 1.2つの方程式がともに実数の解をもつ。 2.どちらかの一方の方程式だけが実数の解をもつ。 *自己解答* 【2次方程式 ax^2+bx+c=0において、判別式D=b^2-4ac】【ax^2-4x+a=0を(1)】【x^2-ax+a^2-3a=0 を(2)】とする。 1.(1)(2)共に実数解なので、判別式も共にD≧0となる。 (1)の判別式16-4a^2≧0→(a-2)(a+2)≦0→-2≦a≦2 (2)の判別式a^2-4a^3+12a^2≧0→解き方が分からず a^2(4a-13)≦0 としてしまいました。→0≦a≦13/4 よってa≠0より 0<a≦2 2.(1)のみが実数解をもつ時 (1)の判別式D≧0→-2≦a≦2 (2)の判別式D<0→a<0または13/4<a よって -2≦a<0 (2)のみが実数解をもつ時 (1)の判別式D<0→a<-2または2<a (2)の判別式D≧0→0≦a≦13/4 よって2<a≦13/4 となったのですが、(2)の判別式が曖昧です。 社会人になってからの勉強ですので相当ブランクがあります。解説と併せてよろしくお願いします。
- ベストアンサー
- 数学・算数