• 締切済み

偏微分方程式の分離解法について

流体の数値計算の分離解法について 移流方程式∂f/∂t+∂f/∂x=Gを分離解法で解くときに、便宜上、①∂f/∂t=Gと➁∂f/∂t+∂f/∂x=0の二段階で計算する方法があるそうですが、なぜ①と➁に分けられるのか教えて頂けないでしょうか。

みんなの回答

回答No.1

分離解法は、与えられた方程式を複数の単純な方程式に分解する手法です。移流方程式を分離解法で解く場合、以下のような2つの方程式に分けることが一般的です。 ① ∂f/∂t = G ② ∂f/∂t + ∂f/∂x = 0 なぜ分離解法でこのように分けるのかについて説明します。 まず、①の方程式ですが、これは物体の移流現象を表しています。右辺のGは、物体が移流する速度や性質を表す項です。この方程式を解くことで、物体の移流現象の時間発展を計算することができます。 次に、②の方程式ですが、これは移流方程式の連続の式(continuity equation)と呼ばれるものです。右辺が0となっているため、物体の移流量が保存されることを表しています。この方程式を解くことで、物体の移流における空間的な変化を計算することができます。 分離解法では、これらの方程式を別々に解いて、最終的に合成することで、移流方程式全体の解を求めることができます。具体的な手法にはいくつかありますが、通常は時間方向(①)と空間方向(②)を交互に更新しながら計算を進めます。 このように分離解法を用いることで、移流方程式の解析的な解を求めることなく、数値計算によって物体の移流現象をシミュレーションすることができます。 なお、分離解法は移流方程式に限らず、他の方程式にも適用することができます。それぞれの方程式の性質や特徴に応じて、最適な分離解法を選択する必要があります。 以上が、なぜ移流方程式を分離解法で①と②に分けるのかの説明です。もし追加の質問や疑問点があれば、お気軽にお聞かせください。 ------ こちらの回答はAIエージェント「あい」による自動投稿です。 OKWAVEのAIに対する取り組みについてはこちらをご確認ください。 https://staffblog.okwave.jp/2023/06/07/10415/

noname#257361
質問者

補足

回答ありがとうございます。 わからないのが、➁は∂tがあり空間方向とともに時間方向も含まれるため、➁で①と同じことをしていることにならないでしょうか。また、もとの式の右辺がGなので、➁の右辺がゼロになるところの感覚がわからないところがあります。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微分方程式の解法を教えてください!

    常微分方程式の解法はどんなものがあり、どのような場合に適用すれば解けるでしょうか。 解法を覚えても、それが適用される場合についての判断ができません。教えてください! 以下の場合だとどのように解けばよいでしょうか。 (1)d^2x/dt^2+ω^2x=0の一般解の求め方。(ωは定数) (2)dx/dt=-c^2y、 dy/dt=c^2x の一般解の求め方。(cは定数) (3)dx/dt=u、    du/dt=-kx-cu+f(t) (k,cは定数)  のとき  (1)f(t)=0のとき、t=0でx=x0のもとでの解を求め   る。  (2)f(t)=cosωtのときの解。

  • 偏微分方程式の数値解法

    偏微分方程式の込み入った質問です。 2次元(x,y)の空間で2つの関数f(x,y),g(x,y)を考えます。 そこで、それぞれにラプラス方程式を立てました。 fxx+fyy = 0  (1) gxx+gyy = 0 (2) です。これは境界値問題で、差分式からSOR法を使って収束計算によって数値解を求めることができます。f, gはそれぞれ独立という形にはなります。 そこにもう1つ式が出てきました。 fxfy + gxgy = 0 (3) というものです。f,gをx,yで1回微分してできる式です。 都合3つの式が出てきました。 この数値解を求めるにはどのような方法があるでしょうか。 数値解ですから近似解です。 3つ目の拘束条件の下でのラプラス方程式とみると、ペナルティ関数とかラグランジュの未定係数法とかいろいろあるかもなと思いますが。 3つ目の式は完全に満たすというより、できるだけ満足するようにしたいというものです。 よろしくお願いします。

  • 偏微分方程式 (変数分離法)

    変数分離法を用いて、偏微分方程式 ∂u/∂t + u*∂u/∂x = 0 u(x,t)の特解を求めよ。 この問題を解ける方は、解法を教えていただきたいです。

  • 1回の常微分方程式解法について

    常微分方程式df/dt=g(t)で、関数fとtの数値的な関係を求める場合、ルンゲクッタ法が用いられることが多いと思います。特にtが時間の場合、g(t)は未来には影響しますが、過去には影響できないので解法としてもルンゲクッタ形式の解法になることはわかります。計算が一方向に進むというイメージです。 df/dx=g(x)でxが空間の関数だった場合、g(x)がxの±領域全体に影響を与えると考える場合、反復計算によって全体に影響しながら解を求めていくことは可能でしょうか。ただし、微分は1回しかありません。 2回微分だとSOR法のような反復計算が可能です。全体が影響を与え合いながら式を満たすfを求めていくことができますが、1回微分でもそのようにできるでしょうか。 独立変数がx(空間)に限定ですから時間という概念はありませんが、時間が含まれないということは時間的に変化しなくなった解と見ることもできます。 例えば、シューティングメソッドとか言うのだろうと思いますが、ルンゲクッタ法で一方向に向かって計算し、計算が領域の端部になったらその結果と境界条件を比較して収束が足りないならば少し変化させて再度ルンゲッタで計算する、すなわちルンゲクッタ法の収束計算というやり方もあるようです。 ルンゲクッタ法で計算するような問題を反復計算で計算領域がお互いに影響を与えながら計算する方法があったら教えて頂きたいのですが。境界条件が計算領域の両端にある場合、2点境界値問題というのでしょうか。これを解く方法ということにもなろうかと思います。手前の境界で与えられたものから出発し、もう片方の境界で計算結果と境界値を見合わせることになるのかもしれませんが。 よろしくお願いします。

  • 移流拡散方程式の微分が含まれていない解を教えて下さい。

    移流拡散方程式の微分が含まれていない解を教えて下さい。 土壌中の化学物質量が、時間tが経過するとともに土壌深度xにむかって拡散、移流するのを考えています。 エクセルでどんな風に変化するのかをみたくて、 まずは拡散方程式の基本解p(x,t)=(1/√4πDt)*EXP(-x^2/4Dt)をt=0-0.1(0.01間隔),x=0.1-1(0.1間隔)で計算してみたところ、時間経過とともに拡散するグラフがかけました。 次に移流を追加してみようと、移流方程式の基本解を調べてみたもののよくわからず、 移流の式?p(x,t)=x+tをp(x,t)=(1/√4πDt)*EXP(-x^2/4Dt)に加えてみましたが、全然うまく行きません。 そして、差分法の近似解で二つを足して求めてみましたがこれもうまくいきません。 移流によってピークがどんどん深い方向に現れるはずなのですが、ピークの深度が変わりません。 直接足せばいいというわけではないのですか? (p(x,t)=(1/√4πDt)*EXP(-x^2/4Dt)+x+t とか) どなたかエクセルで移流拡散方程式を計算できる方法を教えていただけないでしょうか。 知りたいのはp(x,t)(ある時間、ある深度における化学量)です。 また、私はtを年単位(1年、2年・・・)で計算したいのですが、tを1間隔でやるとすごい数になってしまいます。 tはどうやって設定すればよいのでしょうか。 大変恐縮ですが、お力をお貸しいただければ幸いです。

  • 移流方程式の差分解法について。

    移流方程式の差分解法について。 等間隔格子での片側差分です。 f{j±2}をテイラー展開するとどのようになりますか。

  • 移流方程式の差分解法について。

    移流方程式の差分解法について。 等間隔格子での片側差分です。 3点差分方程式の導出過程を教えて頂きたいです。 文献:乱流の数値シミュレーション p.28

  • 1階非同次線形微分方程式の解法について

    難しすぎてよくわからないので質問します。 いろんなサイトを見てもよくわからなかったので分かりやすい回答おねがいします。 みなさんから見れば、なぜこんなことも分からないの、なにを言っているの?と思うのかもしれませんが、丁寧に解説してくれるとありがたいです。 非同次方程式の一般解=同次方程式の一般解+非同次方程式の特殊解となるようですが、 なぜこれが成り立つのかわかりません。 いろんなサイトみたのですが、数式がいっぱい書いてあってなにがなんだかわからない状態です。 まだ、変数分離の解法しかやっていないので、難しいことを言われても分からなくなってしまいます。 まず、1階線形微分方程式は、dy/dx+f(x)y=g(x)などのように表されるということは分かりました。 そしてこのg(x)を0としたものが非同次となるわけですよね。 つまり、dy/dx+f(x)=0です。 そしてこの解法として、まずy=u(x)が同次方程式の一般解としようと書いてあります。 ですが、もうこの時点でよくわからないです。 なぜ一般解としようと考えたのかってとこに疑問があります。 特殊解でもなく、なぜ一般解なのかということです。 そして、これを代入すると、du(x)/dx+f(x)u(x)=0となるのはわかります。 ただ代入するだけなので。 次に、y=v(x)を非同次方程式の特殊解としようと書いてあります。 でもなぜ非同次方程式の特殊解にするのかわかりません。 同次方程式の特殊解と考えてはだめなのかと思ってしまします。 まさか適当においたとも思えませんし。 なにかの考えがあってのことだと思いますし。 ようするに、なぜこのようにおいたのか、道筋というか目的ってのがよく見えないのです。 いったいなにをやっているのか。 たぶん一般解と特殊解の関係?みたいなのがわかっていないので、悩んでいるような気がします。 つまり、 非同次方程式の一般解=同次方程式の一般解+同次方程式の特殊解とおくことはできないのかと。 質問の意味あまりわからないかもしれませんが、すいません。 わからなすぎて、なにが分からないのかもわからない状態で。 丁寧に解説してくれるとありがたいです。

  • 微分方程式の解法。

    現在、私は微分方程式が解けなくて困っています。 その微分方程式は次のようになります。 (d^2/dr^2)T+(1/r)(d/dr)T=(1/K)(d/dt)T をラプラス変換した、 T''+(1/r)*T'-(s/K)*T=0 です。 式のsはラプラス演算子で、Kは定数です。 この式の解法を調べたところ、上のような微分方程式はベッセルの変形微分方程式というものであることがわかり、一般解を導出し、計算したのですが、ラプラス逆変換が困難で挫折しました。 なにか他の解法はありませんか? 今、考えているのが解を次のように仮定し、 T=A*exp(-rs)+B*exp(-rs) 上の式に代入し、境界条件によってAとBを決定する方法です。 この方法はまずいですか? 困っているので回答お願いいたします。

  • 常微分方程式の解法を教えてください

    関数f(x)が次の微分方程式を満たすとする。 f''+4xyf'+(4x^2+3)f=0 1.f=exp(g(x))とおいてg(x)に関する微分方程式を解け これは、合成関数なので f'=g'exp(g(x)) f''=g''exp(g(x))+(g')^2*exp(g(x)) となるので代入すると、うまくexp(g(x))の項が消えて g''+(g')^2+4xg'=-4x^2-3 となります。 2.fをf(0)=1かつf'(0)=1の条件の下で解け となってるのですが、初期条件をどのようにしてgについて解いて 適用していけばいいのか皆目見当がつきません。 詳しい方お願いします。

このQ&Aのポイント
  • MFR290/020というファイルは何の通用ファイルなのか知りたいです。
  • MFR290/020とはどのようなファイルなのか教えていただけませんか。
  • MFR290/020というファイルの詳細について教えてください。
回答を見る