- ベストアンサー
- 困ってます
図形問題
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- naniwacchi
- ベストアンサー率47% (942/1970)
こんばんわ。 まず、問題に書かれている他に、長さを求められる辺があります。 たとえば、「対角線」です。 すると、等しい長さになるところが、いくつかでてきます。 そこから、大きさが等しい角も、いくつかでてきます。 さらに、平行線の性質からも大きさが等しい角がでてきます。 一つ目の問いは、辺BHと辺HDをそれぞれ含む三角形の相似を考えます。 二つ目の問いは、「残りもの」で考えれば求められると思います。
その他の回答 (1)
- 回答No.2

まず、BE=10-4=6(cm)、cos∠CDB=3/5,(sin∠CDB=4/5) です。 ベクトルAB=b, ベクトルAD=d とし、矢印を省略して書きます(他のベクトルも同様)。 AE=(2/5)b+(3/5)d であり、 AF=k*AE (k>1)、DF=l*b (l<1) とおくと、AD+DF=AF より、(l, k)=(2/3, 5/3) を得ます。 すなわち、AE:EF=3:2, DF=4(cm). となります。 また、BH:HD=t:(1-t) とすると、AH=(1-t)b+t*d, GH=s*GF (s<1) とすると、 (5/6)b+s*GF=AH すなわち、(5/6)b+s*(d-(1/6))*b=(1-t)b+t*d となりこれから、s=t=1/5. よって、BH:HD=1:4. 最後に三角形EHFについて、 上の結果より、HE=4(cm). Fから対角線BDに下ろした垂線の長さhは、h=DF*sin∠CDB=4*4/5=16/5. よって三角形EHFの面積Sは、 S=(1/2)*4*(16/5)=32/5(cm^2) となります。
質問者からのお礼
ありがとうございました。
関連するQ&A
- 平面図形の問題です。お願い致します。
長方形ABCDがあり、点Eは辺BCの延長上の点で、BC:CE=2:1です。辺AB上に、2点A,Bと異なる点Fをとり、点Eと点Fを結びます。また、線分EFと対角線BD、辺CDとの交点をそれぞれG,Hとします。四角形AFGDの面積と△BEGの面積が等しいとき、線分CHの長さは線分HDの長さの何倍になりますか。
- 締切済み
- 数学・算数
- 中学数学の図形の問題です。
数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。
- 締切済み
- 数学・算数
- 中学生の数学 証明問題
中学生の問題ですが、解けません。どうぞご指導ください。問題 正方形ABCDにおいて2つの対角線の交点をEとする。辺CD上に2点C,Dと異なる点Fをとり、線分BFと線分ACとの交点をGとする。点Aから線分BFに垂線AHを引き、線分AHと線分BDとの交点をIとする。Q1 AI=BGであることを△AIEと△BGEが合同であることを証明して示しなさい。Q2 BH=2Cm HG=3Cm であるとき正方形の面積を求めなさい。 Q1は解けました。Q2が解けません。答えは40cm2ですが、解き方がわかりません。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学の問題がわからなくて困ってます (空間図形)
題名の通り、下記の問題がわかりません。教えてください。 ここに、AB=AD=6cm,AE=7cmの直方体ABCD-EFGHがある。面ABCDにおいて、2つの対角線ACとBDの交点をIとする。また、線分ID上に点Pを打つ。この時、次の問いに答えよ。 (1)四角すいPEFGHの体積を求めなさい。 (2)⊿PEGが正三角形となるとき、IPの長さを求めなさい。
- ベストアンサー
- 数学・算数
- 中学数学図形の問題です
教えて下さい 図の四角形ABCDは AB//CD、∠ABC=90°の台形である。線分BCの中点をMとし、点Mと点Aを結び、線分AMを点Mの方向に延ばした直線と、辺CDを点Cの方向に延ばした直線との交点をEとする。点Dと点Mを結ぶ。∠AMD=90°のとき次の問いに答えよ (1)∠MAB=68°のとき、∠ADEの大きさを求めよ (2)AB=2cm、CD=8cmのとき 辺ADの長さを求めよ、△DAEの面積を求めよ よろしくお願いします
- 締切済み
- 数学・算数
- 数1 図形の問題の解答お願いします H24.07
下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように、円周上に4点A、B、C、Dがある。 線分ACと線分BDは点G垂直に交わり、 点Aから辺CDに垂線AFをおろし、この垂線と線分BDとの交点をEとする。 また、AF=8、DC=10、GC=6である。 (1) 線分DGの長さは、DG=【1】である。 このとき、線分AGの長さは、AG=【2】である。 (2)線分ABの長さは、AB=【3】であり、BDの長さは、BD=【4】である。 (3)△DCGの面積は△AEBの面積の【5】倍である。
- ベストアンサー
- 数学・算数
- 高校入試の問題です 教えてください
AD=6cmの長方形ABCDの辺ADを2:1に分ける点をE、線分BEと対角線ACとの交点をFとし、Bから対角線ACに下ろした垂線をBGとする。△BGF∽△BAEであり、辺ABの中点をMとするとき、GMの長さを求めなさい。
- 締切済み
- 数学・算数
- 高校入試・平面図形の問題【3】
次の問題がよくわかりません。問題に解説が付いていなかったので、分かる方いらっしゃいましたら詳しく教えてください。 ///////////////////////////////////////////////// 【1】下の図のように、円Oの周上にある4点A、B、C、Dを頂点とする四角形ABCDがある。線分ACと線分BDの交点をEとし、また、AB=4cm、∠ABD=∠DBC=30°、∠ACB=45°とするとき、次の各問に答えなさい。 (1)△ACDの面積を求めなさい。 ///////////////////////////////////////////////// よろしくお願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
ありがとうございました。