• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:高校入試・平面図形の問題【3】)

高校入試・平面図形の問題【3】

このQ&Aのポイント
  • 円Oの周上にある四角形ABCDについての問題です。線分ACと線分BDの交点をEとし、他の条件も与えられています。
  • 問題では、△ACDの面積を求めるように指示されています。
  • 解説が付いていなかったため、詳しい解法を知りたいという質問です。

質問者が選んだベストアンサー

  • ベストアンサー
  • tomokoich
  • ベストアンサー率51% (538/1043)
回答No.1

点AからBDに垂線をおろしHとすると △ABHは30°90°60°の直角三角形 AB:AH=2:1=4:AH AH=2cm △AHDは∠DAC=30°∠BAE=75°より∠DAH=45°∠ADB=45°(∠ACBと同一円周角)なので 辺の比が1:1:√2の直角二等辺三角形 AD:AH=√2:1=AD:2 AD=2√2cm △ADCは∠DAC=∠DCA=30°より二等辺三角形なので DからACに垂線をおろしIとすると △ADIは30°90°60°の直角三角形 AD:DI=2:1=2√2:DI DI=√2cm AD:AI=2:√3=2√2:AI AI=√6cm,AC=2√6cm △ACDの面積=AC×DI×(1/2) =2√6×√2×(1/2) =√12 =2√3cm2

yottyanful
質問者

お礼

完璧です^^ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 高校入試・平面図形の問題【2】

    次の問題が分かりません。分かりやすく教えてください。 /////////////////////////////////////////////////////// 【1】下の図で、3点A、B、Cは円Oの周上にあり、△ABCはAB=ACの二等辺三角形である。弧AC上に点Dをとり、線分BD上に、BE=CDとなるように点Eをとる。このとき次の問いに答えなさい。 [問1] AB=5cm, AE=BC=4cmのとき EDの長さを求めよ。 [問2] 2つの線分AC、BDの交点をFとする。[問1]のとき、△BCFと△DCFの面積の比を求めよ。 /////////////////////////////////////////////////////// よろしくお願いします。

  • 図形です

    AB=6、BC=5、AC=9、∠ABD=∠ADB=∠ACBである四角形ABCDがある。このとき・・・ (1)対角線AC,BDの交点をEとするとき、CB=CEであることを証明せよ。 (2)線分BDの長さを求めよ。 (2)は余弦定理で出せますよね?なので(1)だけでもいいのでお願いします!

  • 高校受験・平面図形の問題

    この問題はどうすれば解けるのでしょうか? この問題の図形が全然想像できません。 わかりやすい説明、お願いします。 ///////////////////////////////////////////////////////// ■4 下の図において、四角形ABCDは平行四辺形で、点E、点Fはそれぞれ辺BC、辺CD上の点である。∠EFC=∠DBCのとき、次の各問に答えよ。 【問2】点Eが辺BCの中点のとき、次の(2)に答えよ (2) EF//BDのとき、頂点Aと点E、頂点Aと点Fをそれぞれ結ぶ。BD=20cm、∠EAF=90°のとき、△AEFの面積を求めよ。 ////////////////////////////////////////////////////////// どなたかご教授願います。

  • 高校入試・平面図形の問題【4】

    次の問題がどうしてもわかりません。解答解説を読んでも分からなかったので、力をお貸しください。 /////////////////////////////////////////////// 【1】下の図のような△ABCがあり、点Dは辺ABの中点である。2点E、Fは辺BCを3等分する点で、BE=EF=FCである。また、線分AEと線分DFとの交点をGとする。このとき、次の問いに答えなさい。 (1)四角形AGFCの面積は四角形BEGDの面積の何倍か求めなさい。 /////////////////////////////////////////////// よろしくお願いします。

  • 中学の図形の難問がわからなくて困っています。

    「四角形ABCDで∠DBC=30° ∠ACB=44°  ∠ACD=30°AB=ADのとき  ∠BACの大きさは何度でしょうか。」 という問題です。どなたかお願いします。

  • 図形問題

    数学で解き方が分からない問題があります。 図のように、AB=6cm、AD=8cmの長方形ABCDがある。対角線BD上にDE=4cmとなるように点Eをとる。2点A、Eを通る直線と辺CDとの交点をFとする。また、辺AB上にAG=5cmとなるような点Gをとり、線分FGと対角線BDとの交点をHとする。 このとき次の問に答えよ。 (問)BH:HDを最も簡単な整数の比で表わせ。 答えは、1:4です。 (問)△EHFの面積を求めよ。 答えは、32/5です。 求め方が分かる方がおられたら教えて欲しいです。

  • 図形問題

    四角形ABCDで (左上から下に向かってABCD よってBCが底辺) ∠ABD=20° ∠DBC=60° ∠ACD=30° ∠ACB=50°(∠ABC=∠BCD=80°)の時 ∠ADC は何度になるのでしょうか? (答えは70°になるはずなのですが 解き方がわかりません) どなたか解き方を教えてください ちなみに中学生の宿題ですので 三角関数などは使わず 中学生レベルでお願いします

  • 数学の入試問題がわからないんです!

    こんにちは。 平成25年京都府公立高校の数学の入試問題でわからないところがあるので、だれか教えて欲しいです。 できれば、問題の解き方などもわかりやすく解説していただけるととってもありがたいです。 よろしくお願いします。 問題 図のように、円Oの周上に4点A・B・C・Dがこの順にあり、線分BDは円Oの直径でAB=2√5cm、AD=4cmである。2点C・Oを通る直線が線分ABと交わりその交点をEとし、角AEC=90°とする。 このとき、次の問いに答えよ。 1.線分BDの長さを求めよ 2.OF:FDを最も簡単な整数の比で表せ 3.三角形OCFの面積を求めよ

  • 中3 図形

    AB=ACの二等辺三角形ABCとその3つの頂点を通るOがある。点Cを通り、ABに平行な直線と円Oとの交点をD,ACとBDの交点をE,∠CAD=45°とする。∠CBE=45°、∠ACB=75、AB=2√3cm、AE=2cmのとき、□ABCDの面積は何cm2? よろしくお願いします。 △ABEの面積が2√3×1×1/2=√3cm2だとは分かったのですが、続きがわかりません。

  • 高校入試・平面図形の問題

    次の問題がよくわかりません。詳しく、分かりやすく教えてください。 //////////////////////////////////////////////////////////// 【1】下の図で、△ABCの3つの辺に接する円の中心をOとし、点Oを通り辺BCに平行な直線と辺AB、辺ACとの交点をそれぞれD、Eとする。このとき、次の問いに答えなさい。 (1)AB=4cm, BC=5cm, AC=3cm, ∠BAC=90°のときの、点Oの半径を求めなさい。 (2)AB=5cm, BC=6cm, AC=4cm のとき、線分DOの長さと線分EOの長さの差を求めなさい。 //////////////////////////////////////////////////////////// よろしくお願いします。

このQ&Aのポイント
  • PHA-50 電子ピアノで、ヘッドホンを外した後に本体スピーカーから音が出ず困っています。ヘッドホン使用時の音量が本体スピーカーに適用され続けるようです。
  • 数日前からPHA-50 電子ピアノでヘッドホンを外すと、本体スピーカーから音が出なくなっています。ヘッドホンの音量設定が影響しているようです。本体スピーカーからの音の出し方を知りたいです。
  • 電子ピアノPHA-50で、ヘッドホン使用後に本体スピーカーから音が出なくなる問題が発生しています。本体スピーカーの音の出し方に関する情報を求めています。
回答を見る